

TESTS INCLUDED WITH DISCUSSION
BOOSTT UP SCORE FOR JAM \& CSIR-NET EXAMS

Notes:

1. CSIR-NET Maths Students: The Part 1 of these notes does not contain the full syllabus. It contains some of the important topics, which will definitely help you score well. The other topics are covered in Part 2 of Real Analysis Notes.
2. JAM Maths Students: It contains all topics, but do not rely completely on these notes. Have some standard book to follow.

Important Note: These notes may not contain everything that you are interested in studying. These notes can make your work easier at first. But you should study books. Nothing can replace books.

Suggestion: Follow the book "Understanding Analysis by Stephen Abbott " to get much of the notes.

THANKFUL Note: The notes were written beautifully by Archana Arya, during my classes, to whom I am very much thankful.

Your suggestions are always welcome for anything; something to be added, some mistakes in the notes, or anything.

Contents

Set Theory, Functions, Bounded and Unbounded sets, Supremum \& Infimum, Archimedean Property, Axiom of Completeness of \mathbb{R}, Countability \& Uncountability of Sets, Sequence, Convergence of Sequence, Series, Monotone Convergence Theorem, Cauchy Sequence, Open Sets, Limit Point of a Set, Isolated Point, Discrete Set, Closed Sets, Closure Point, Compact Sets, The Cantor Set, Separated Sets, Connected Sets, Dense Sets in \mathbb{R}, Cauchy's Criterion for the Convergence of Series, Comparison Tests, Ratio's Tests, Cauchy's Integral Test, Leibniz Test, Absolute and Conditional Convergence of Series, Dirichlet's Test, Power Series, Radius of Convergence

SYLLABI

JAM Mathematics

Real Analysis: Sequence of real numbers, convergence of sequences, bounded and monotone sequences, convergence criteria for sequences of real numbers, Cauchy sequences, subsequences, Bolzano-Weierstrass theorem. Series of real numbers, absolute convergence, tests of convergence for series of positive terms - comparison test, ratio test, root test; Leibniz test for convergence of alternating series.

Interior points, limit points, open sets, closed sets, bounded sets, connected sets, compact sets, completeness of R. Power series (of real variable), Taylor's series, radius and interval of convergence, term-wise differentiation and integration of power series

CSIR-NET Mathematical Sciences

Analysis:_Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure,

Lebesgue integral. Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems. Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples.

PRAVEEN CHHIKARA has been involved in teaching higher mathematics since 2012. He believes that the profession of teaching can act a big role in transforming the society towards positivity. Moreover it keeps life youthful in the company of young students. "It gives me pleasure to be with students. It is a fun. They learn from me and so do I. These two converse processes make me bold and bolder day by day," says Praveen Chhikara. He has a community of more than 8 thousand via teaching, social networking and his blogs. The community involves teachers and students pursuing their career at the prestigious institutions of the country.

Praveen Chhikara completed his master's degree in Maths from IIT Delhi. He is currently involved in an NGO "Mathematical Community", to contribute his skills in the development of mathematics education and education system at large.

117716
Real Analysis

- Roaster form: $\{1,2,3, \ldots\}$
- Cardinality of a set: $=$ No. of clements in a set

$$
\begin{aligned}
& \text { e. }: A=\{a, b, c\} \rightarrow|A|=3 \\
& \text { Notation: }|A| \rightarrow \text { Cardinality }
\end{aligned}
$$

Notation: $|A| \rightarrow$ Cardinality of A.

- Singleton set: Cardinality is one. ह.j: $\{3\} \rightarrow$ cardinality is 1 .
* $\left\{x \in \mathbb{R}: x^{2}=-1\right\}=\{ \}=\phi$
ϕ : Norurgian symbol
group - Nicholar Bourbaki
Andre' Leet: The Apprentice of a Mathematician
- Finite set: Cardinality is finite.
- $A \mid B:=\{x \in A: x \notin B\}$
e.g:OR| $Q \rightarrow$ set of all virational numbers.
(2) $A=\{1,2,3,4\} \quad B=\{2,4,7,8\} \quad C=\{10,11,12\}$

$$
A|B=\{1,3\} \quad A| C=\{1,2,3,4\}
$$

- Subset: A, B : set
A is a subset of B i.e. $A \subseteq B \Rightarrow " x \in A \Rightarrow x \in B$ "
* $A=\left\{a_{1}, a_{2}, \ldots, d_{n}\right\}$ is a set if $a_{i} \neq a_{j}$, for any l, j. $\{1,2,3\}=\{2,3,1\} \rightarrow$ order is immaterial! $\{1,1,2,3\} \rightarrow$ Not allow rd

No repetition is allowed in sets.

- In permutation, ormedaition is 3 fond means multiplication.
* $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \rightarrow$ finitt set

2choicux 2chociar. \times 2echasids $=2^{n} \rightarrow \mathrm{No}$. of sultert of A .

* ${ }^{n} C_{1} \rightarrow$ choose l element from II etemunta

$$
\begin{equation*}
{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n} \tag{2}
\end{equation*}
$$

No ene comus scome 2comes He conce

$$
\begin{equation*}
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} z^{2}+\ldots+{ }^{n} C_{n} x^{n} \tag{1}
\end{equation*}
$$

Put $x=1$ in (1), we get (2)
(2) $|A|=n<\infty$, then the sulset of A is 2^{n}.

* A : set

* $P(A)$ is never empty ($\because n$ has at least value $0 \Rightarrow 2^{\circ}=1$)

Q If $A=\{1,\{1,2\}, \phi, 3\}$, then which of the following is (are) the
(1) $2 \in A$
(2) $\{1.2\} \subset A$ ($1 \subset A$ but $2 \nmid A^{\circ}$)
(3) $\phi \subseteq A$ (always be teve whatever le A)
(4) $\{1,2\} \in A$
(5) $\{1,2,3\} \subseteq A(2 d A)$

* Empty set is a sulsect of every set
* A, Br seto

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Q If $A \cup B=A$, then
(a) $A=B($ not necessarity) alle $(b) A \subseteq B$

8) $A \cap B=\{x: x \in A$ andala $x B\}$
Q. If $A \cup B=A \cup C$ and $A \cap B=A \cap C$, then:
(a) $A=B=C$
(b) $A=B$
(c) $A=C$
(d) $B=C$

Outside part of C (if we take more then $A \cup B \neq A \cup C$.)
(*) $A \cap B=A$, then $A \subseteq B$

* A, B finite sits

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Q. A survey show that 63% of Americans like apples and 76% like cheese. If $x \%$ like both, then find x :
sod $\quad|A|=63 \quad|C|=76 \quad|A \cap C|=$?

$$
\begin{aligned}
& |A \cap C|=|A|+|C|-|A \cup C|=63+764(762100)=39 \text { to } 63 \\
& \therefore 39 \leq|A \cap C| \leq 63
\end{aligned}
$$

*

$$
|A|+|B| \geqslant|u|
$$

$$
|A|+|B| \leq|U|
$$

(2) $\max \{|A|,|B|\} \leq|A \cup B| \leq\{\min \{|A|+|B|,|U|\}$
(${ }^{\prime \prime} 0 \leq|A \cap B| \leq \min \{|A|,|B|\}$

- Complement of a set: $A^{c}=U \mid A$

$$
A \cup A^{c}=U
$$

Q In a battle, 70% of the combatants lose one eye, 80% lose an ear, 75% lose a leg and 85% lose an arm. If $x \%$ lose all the four limes. Find the minimum value of x.
sen $x=\left|E_{y} \cap E_{R} \cap L \cap A\right|$
(16)

De Margom'A Lans:

$$
(A \cup B)^{C}=A^{6} \cap B^{C}
$$

$$
\begin{aligned}
& |A|=|u|-\left|A^{c}\right| \\
& x=|u|=\|\left(E_{y} \cap E_{x} \cap \mid \cap A\right)^{G} \\
& I=100 \quad\left\lfloor F_{y}^{y} U E E U L_{i}^{c} U A^{c}\right\rfloor
\end{aligned}
$$

Hinumuan thation is is mbatimnim?
Whem they are disjount

$$
\begin{aligned}
& \text { Wham they aus duffount } \\
& \left|E y^{2}\right|+\left|E n^{2}\right|+\left|L^{9}\right|+\left|A^{4}\right|=30+20+25+15=90 \\
& x=100-90=10
\end{aligned}
$$

Q It $A_{1}, A_{2}, \ldots, A_{30}$ be 30 bets, boch with 5 himimis, nind
 $\int_{1}^{3} A_{i}=s=0_{i=1}^{n} B_{j}$, If each ilement of s is a memeres of
 iwastly 9 By's, them $n=$?
Soln: $\left|\frac{8}{2}\right|=\frac{15 \phi}{10}=\frac{3 n}{33} \Rightarrow n=45$

$$
\begin{aligned}
& \alpha \in B A_{1} \Rightarrow \alpha \in S \\
& \alpha \in A_{i} \rightarrow 10 A_{i}^{\prime} A
\end{aligned}
$$

- Function:

- graptes

1) $y=x \rightarrow$ Ieluntity functiom.
2)

$$
\begin{aligned}
& f(-x)=f(x) \rightarrow \text { even fund" } \\
& f(-x)=-f(x) \rightarrow \text { odd fun" }
\end{aligned}
$$

* graph of $f(x)$

3)

4) $y=x+k, K \in \mathbb{R}$.

5) $\begin{aligned} & y=|x|=\left\{\begin{array}{l}x: x \geqslant 0 \\ (-x): x<0\end{array}\right. \\ &+v^{2}:-v e\end{aligned}$

All are parallel and as slope are same

* stol $\rightarrow(0.5)^{1}=0.5 \quad(0.5)^{2}=0.25 \quad(0.5)^{3}=0.0125$

6) $y=x^{2} \rightarrow$ Even funcn
7) $y=x^{3} \rightarrow$ Odd fund $n y=\frac{x^{3}+1}{y=x^{3}}$

\star

$$
\begin{aligned}
& \sin (-x)=\sin (0-x)=\sin (0) \cos (x)-\cos (0) \sin (x)-\sin x \\
& \cos (-x)=\cos (0-x)=\cos (0) \cos (x)+\sin (0) \sin (x)=\cos x \\
& \tan (-x)=\sin (-x) / \cos (-x)=-\sin x / \cos x=-\tan x
\end{aligned}
$$

* Sine function: Odd function

Cosine function: even function
Tangent function: Odd function
*

$$
\begin{aligned}
& x^{4} \rightarrow \text { Even } x^{5} \rightarrow \text { odd } x^{4}+1 \rightarrow \text { ten } \\
& f(x)=x^{4}+x^{3} \rightarrow \text { Even or odd ? } \\
& \begin{aligned}
f(-x)=-x^{4}-x^{3} & \neq f(x) \rightarrow \text { Not even } \\
& \neq f(x) \Rightarrow \text { Not odd }
\end{aligned}
\end{aligned}
$$

$\therefore f(x)$ is neither even or odd
*

$$
\begin{aligned}
& f(x): \text { Sven function } \Rightarrow f(-x)=f(x) \forall x \\
& \text { odd function } \Rightarrow f(-x)=-f(x) \forall x \\
& f(x)=-f(x) \forall x \Rightarrow 2 f(x)=0 \forall x \Rightarrow f(x)=0 \forall x
\end{aligned}
$$

* Zero function: Only function which is even as uriel os odd

$$
\begin{aligned}
& f(x)=\underbrace{f\left(\frac{f(x)+f(-x)}{2}\right.}_{g(x)}+\underbrace{f \frac{f(x)-f(-x)}{2}}_{h(x)} \\
& g(-x)=f(-x)+f(x)=g(x) \Rightarrow g(x) \text { is wen } \\
& h(-x)=\frac{f(-x)^{2}-f(x)}{2}=-h(x) \Rightarrow h(x) \text { is odd }
\end{aligned}
$$

* f: $\mathbb{R} \rightarrow \mathbb{R}$ can be expressed as a sum of an even function and an odd function
- Exponential function: $y=a^{x}, a: b a s e, a>0, a \neq 1$ function function
$\left[\frac{\infty}{\infty}\right] \rightarrow$ inderminat form

$$
\text { * } \begin{aligned}
& A=\{(x, y): y=x\} \\
& B=\left\{(x, y): y=e^{x}\right\} \\
& \text { A } B=?=\$ \\
& \text { Slope }(y=x): 1 \\
& \text { Slope }\left(y=e^{x}\right): e^{x}
\end{aligned}
$$

*O $y=\frac{1}{x} \Rightarrow \frac{d y}{d x}=-\frac{1}{x^{2}}<0$
\rightarrow odefancen x^{x} stressing
(2) $\frac{y=\frac{1}{x^{2}} \Rightarrow \frac{d y}{d x}=-\frac{2}{x^{3}}}{4 \text { even fum } x}$

* Odd function: symmetric in opposite quardants $\left(\begin{array}{l}1 \times 3.2 a r \\ 2+4.4 u r \\ 2\end{array}\right)$ even function: symmetric about the axis of y.
* $\begin{aligned} & y=x+\frac{1}{x} \\ & \text { Hod fence" }\end{aligned} \quad \frac{d y}{d x}=1 \frac{-1}{x^{2}}$.
are quductimar Que is high

$$
\begin{aligned}
& \alpha<\beta \\
& b \alpha<b \beta \text { if } b>0 \\
& b \alpha>b \beta \text { if } b<0
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{x}{1+x^{2}} \\
& \text { otd funx } \\
& \frac{d y}{d x}=\frac{1+x^{2}-2 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

$x(1+x) x$
Slope at $0=\left.\frac{d y}{d x^{x}}\right|_{x=0}=1$

$$
\begin{aligned}
& \left.d y\right|_{x=1}=00^{d x^{0} \mid x=0} \\
& \lim _{x \rightarrow 0} \frac{x}{x^{2}+1}=\operatorname{lt}_{x \rightarrow \infty} \frac{1}{2 x}=0
\end{aligned}
$$

K'Hapual's Rule
137716

* $y=a x^{2}+b x+c, a \neq 0$

Cuse I: $a>0$

$$
D=b^{2}-4 a c
$$

$$
\frac{d y}{d x}=2 a x+b>0 \Rightarrow x>-\frac{b}{2 a}
$$

$D>0$
$D=0$

$D<0$

Case II: aseo

$$
\begin{gathered}
\Rightarrow \frac{d y}{d x}>0 \Rightarrow x<\frac{-b}{2 a} \\
D=0
\end{gathered}
$$

$$
\frac{d y}{d x}=2 a x+b>0 \Rightarrow 2 a x>-b \Rightarrow \begin{cases}x>\frac{-b}{2 a} & \text { if } a>0 \\ x<\frac{-b}{2 a} & \text { if } a<0\end{cases}
$$

- Txipenamsterical functions:
(3) $y=\sin x \rightarrow$ Periodic function \rightarrow Period $=2 \pi$
+

$$
-1 \leq \sin x \leq 1
$$

oscillatory graphs
(2)

$$
y=\cos x \rightarrow \text { Periodic function } \rightarrow \text { Period }=2 \pi
$$

$$
-1 \leq \cos x \leq 1
$$

(3) $y=\tan x \rightarrow$ Priodio function \rightarrow Period $=\pi$

(4) $y=\sec x$

(5) $y=\operatorname{cosec} x$

C) $y=\cot x$

* If

(7) $y=|\sin x| \rightarrow$ Periodic function \rightarrow Period $=\pi$

(8) $y=|\tan x|$

\star

$$
\begin{aligned}
& \sin \theta=\frac{P}{H}=P \\
& \cos \theta=\frac{B}{H}=B
\end{aligned}
$$

\rightarrow Unit curricle (with redis 1)
(9)
$y=\sin \left(\frac{1}{x}\right) \rightarrow$ Not a periodic function
Odd function.

$$
\text { xix } \frac{1}{x} \ngtr 1 \quad x \rightarrow \frac{2}{\pi} \text { to } \infty \rightarrow \frac{1}{x} \rightarrow \underbrace{\frac{\pi}{2} \text { to } 0}_{\text {Is guardant. }} \sin \frac{1}{2} \rightarrow 1 \text { to } 0
$$

$\frac{2}{\pi}<1 \quad \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

cusshus) fase ise
Dove 12

(10) $y=x \sin \frac{1}{x} \rightarrow$ twen function

$$
\left.\lim _{x \rightarrow \infty} x^{2} \sin \frac{1}{x}=\operatorname{lt}_{x \rightarrow \infty} \frac{x}{\infty} \frac{\left(\sin ^{1} / x\right.}{\frac{1}{x} x}\right)=\infty
$$

$-\frac{4}{1 T^{2}}$
(2)

$$
y=x^{3} \sin \frac{1}{x} \rightarrow \text { Even function }
$$

$$
x \rightarrow \frac{2}{\pi} \text { to } \infty \rightarrow \frac{1}{x} \rightarrow \frac{\pi}{2} \text { to } 0 \Rightarrow x^{3} \sin \frac{1}{x} \rightarrow \frac{8}{\pi^{3}} \text { to } \infty
$$

$$
y=-x^{3}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{3} \sin \frac{1}{x} & =\lim _{x \rightarrow \infty} x^{2} \frac{\sin 4 x}{\frac{1}{v_{1}} x} \\
& =\infty
\end{aligned}
$$

- One-to-one functions: $f: A \rightarrow B$

$$
x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

or

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \\
& P \Rightarrow Q \\
& o \& \quad \& \quad \text { equivalent. }
\end{aligned}
$$

Q Which of the following are one-to-one?
(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}+4$
(2) f: $\mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=3 x^{3}-5$
(3) f $: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\sin x$

Set (1) $f(1)=f(-1)$
*

If $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$, then its becomes one-to-one
(2)

* If a horizontal line cut the graph of function at more than one point, then that function issone-to-one.
* Strictly increasing continuous functions are one-to-one e.g: $y=\tan x$ is always strictly increasing brit it is not one- $t \theta-o n e(\tan \theta=\tan \pi)$ as it is not continuous.
$* \quad f: \mathbb{R} \rightarrow \mathbb{R}$
$f(x)=x^{n}$

$$
f(x)=x^{n}
$$

Case I: $\quad n:$ even \rightarrow Not one-to-cone
Que I:- n : od

$$
f^{\prime}(x)=n x^{(n-1)} \text { strictly increasing } \& \text { continuous } \Rightarrow \text { one - to -one }^{2} \geqslant 0
$$

Q Find the number of real root of $9 x^{9}+7 x^{7}+5 x^{5}+3 x^{3}+1=0$
Set: At least one real root as max. \# of
non rial roots $=8$.

$$
\begin{aligned}
& f(x)=9 x^{4}+7 x^{7}+5 x^{5}+3 x^{3}+1 \\
& f^{\prime}(x)=81 x^{8}+49 x^{6}+25 x^{4}+9 x^{2} \geqslant 0
\end{aligned}
$$

$\Rightarrow f$ is strictly increasing

$$
\begin{aligned}
& \operatorname{lt}_{\operatorname{lt}_{x \rightarrow-\infty}} f(x)=\infty \\
& f(x)=x_{-\infty}^{x^{9}}\left(9+\frac{7}{x^{2}}+\frac{5}{x^{4}}+\frac{3}{x^{6}}+\frac{1}{x^{9}}\right)=-\infty
\end{aligned}
$$

The function is strictly increasing \& continuous.
\Rightarrow It cut x-axis at only one paint \Rightarrow one real root.

- Onto functions: $f: A \rightarrow B$

Range = Codomain
$\log : 0 f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sin x$
Range $(f)=[-1,1] \Rightarrow$ Not onto
(2) $f: \mathbb{R} \rightarrow[-1,1], f(x)=\sin x \rightarrow$ Onto
(3) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3} \rightarrow$ Not onto
(4) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2} \rightarrow$ Not Onto

(5) $f: \mathbb{R} \rightarrow \mathbb{R}^{+}, f(x)=x^{2} \rightarrow$ Onto

* If a horizontal line cuts the graph of function at least one point, then that func ${ }^{n}$ is onto.
2 Onto tach horizontal line cuts the graph at at least one
print.

(*) One-to-one: each horizontal line cuts the graph at not more than one pt.

$$
f: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \text { Not one-to-one. }
$$

$$
\text { - Fields: } \mathbb{F} \leq \mathbb{R}
$$

- Order property: $a, b \in \mathbb{R}, a \neq b] \Rightarrow a<b$ or $b<a$ Q, R: ordered fields (has order property)
* $a \in \mathbb{Z}$ set. $a^{2}:$ even

$$
a^{2}=(a) \cdot(a) \Rightarrow a \text { is even. }
$$

teas 2 ass factor shes 2 as a factor
$L^{2}(\because$ both are sames
(2) If $a \in \mathbb{Z}$ such that a^{2} is even, then a must be even.
(2) Result: There is no rational number x st $x^{2}=2$

Q oof: hat if possible, $x^{2}=2, x \in 2$

$$
\begin{aligned}
& x=p / q ; p, q \in \mathbb{Z}, q \neq 0, q \cdot C \cdot d(p, q)=1 \\
& x^{2}=2 \Rightarrow\left(\frac{p}{q}\right)^{2}=2 \Rightarrow p^{2} \\
\Rightarrow q^{2} & =2 p^{2}=2 q^{2}-1 \\
\Rightarrow & p^{2} \text { is even } \Rightarrow p \text { is wen - (A) } \\
\Rightarrow & p=2 m, m \in \mathbb{Z}
\end{aligned}
$$

"Completeness" \rightarrow helps in differentiating b|WR\&Q

Put $p=2 \mathrm{~m}$ in (1)

$$
\begin{aligned}
& 4 m^{2}=2 q^{2} \Rightarrow q^{2}=2 m^{2} \Rightarrow q^{2} \text { is even } \Rightarrow q \text { is even - B } \\
& (A) 4(B \Rightarrow 1 \Rightarrow \text { as })=2 \text { g.c.d. }(p, q)=1
\end{aligned}
$$

* $2 \subset \mathbb{R}$ (By above result)
* If we say that \mathbb{R} is an ordered field, is it a complete characterization of \mathbb{R} ? No, b/c $\&$ is also orelered full. We need a property that distinguishes $Q \& \mathbb{R} \rightarrow$ "Completeness"
* $A \subseteq \mathbb{R}$, when to call a set bounded above?

- Definition: $A \neq \varnothing, A \subseteq \mathbb{R}, A$ is s.t.b. a bounded above set if 7 a bell sit. $a \leq b \forall a \in A$
b : upper bound of A.
Q) Give some upple bounds of
(1) $S_{1}=\left\{x \in \mathbb{R}: x^{2} \leq 4\right\} \rightarrow[-2,2]$
: 2 is an upper bound of S_{1},
(2) $S_{2}=\{\sin x: x \in \mathbb{R}\} \rightarrow[-1,1]: 1$ is an upper bound of S_{2}
- Definition: $A \neq \varnothing, A \subseteq \mathbb{R}, A$ is st. b a bounded below set if $7 a{ }^{\prime} b^{\prime} \in \mathbb{R}$ s.t. $a \geqslant b \forall a \in A$
b : lower bound of A.
Q How many upper bounds? and does a bounded set have?
Sen: If $b: U \cdot B$, then $b+1, b+2, b+3, \ldots$ all are U.B.S.
If $b: L \cdot B$., then $b-1, b-2, b-3, \ldots$ all are L.B.S.
* Once one upper bound is known, ur can find infinitely many upper bounds and similarly, once ^lower bound is known, we can find infinitely many bour bounds.

Terence Tau $] \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$
CLASSTIME/Page No. 18

* $A \subset \mathbb{R}, A \neq \varnothing$

Unbounded above \Rightarrow Not a finite set
Absence of upper bounds
Mean? how No number, however big, cannot be an upper bound of A.
For any $b \in \mathbb{R}, F a \in A$ sit. $b<a$
$\left.\begin{array}{l}\text { * } A \subseteq \mathbb{R}, A \neq \varnothing \\ \text { Absence of Low re bounds }\end{array}\right]$ Mean?
For any $b \in \mathbb{R}, F a \in A$ set. $b>a$

* $A=[0,] \cup[2,3)$

The smallest upper bound is significant here. How to define it?

- $A \neq \phi, A \subseteq \mathbb{R}$, s: least upper bound of A
(1) s is an upper bound of A
(2) If b is an upper bound of A, then $s \leq b$
- $A \neq \phi, A \subset \mathbb{R}, t$: greatest louver bound of A
(1) Lis a lower bound of A.
(2) If b is a lower bound of A, then $b \leq t$.
- $A \neq \phi, A \subseteq \mathbb{R}$

A: bounded above \& bounded below $] \rightarrow$ Bounded sets

- unbounded sets: The set which is not bounded eg: $\mathbb{N} \rightarrow\{1,2, \ldots\} \rightarrow$ bounded blow (lours bound is 1) $] \Rightarrow$ Not
bounded
and not bounded above

If Mas many supetans. for a bsundud abeve zets (non-cmply) exist?
3^{52} Chime linget sup witrown

$$
2 \neq 7, A \subset K
$$

arde duprima of A
\& $a \leq 1$, taEA $\quad Q<s_{2}+a \in A$

$$
\left.\begin{array}{l}
A_{1}: s_{4} p_{1} s_{2}: U B \Rightarrow s_{1} \leq A_{2} \\
A_{2}: S_{4} \beta_{2}, s_{1}: U B \Rightarrow s_{8} \leq s_{1}
\end{array}\right] \Rightarrow s_{1}=s_{2}
$$

(8) if supherwam buist than it is unigue.

- thumplear
(c) $A=[0,1)$

PPisk any ns. <1 :can't B anues. of A
so, sup $A=1 \notin A$
(2) $B=[0,1]$

$$
\sup B=1 \in B
$$

(7) The suprumum of a set may not lelong to the set.

- Juphumuan Q \& raximal tement Fay be cutside the it rust le inside the set, if it exusts
* If a manimal elument exists, it must be the supremum Supremum \Rightarrow raximal element.

Q Find the supremum \& infimum (if they exists).
(1) $[a, b)$

A Maximum X
$\sup =b \notin A \quad$ snf $=a \in A$
(a) Minimum
(2) $(a, b]$
(b) + Maximum V

Sup. $=b \in A$

$$
\Delta n f=a \notin A
$$

rinimum X
(3)

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \text { sup }-4, \mathrm{~A}
\end{aligned}
$$

$$
m f=1 E A
$$

Haximum iliment Ninimum dement

* A finite a nenempty sel has a maximum as will as minimum lement.
(4) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& \text { sup }=1 e A
\end{aligned}
$$

Haximum thment

Inf $=0 \& A \rightarrow$ Hinimum alement dolan' ' Exast.
(5) $\left\{1+\frac{(-1)^{n}}{n} \quad n \in \mathbb{N}\right\}$

$$
S \text { up }=\frac{3}{\text { Hasumum }} \in A
$$

$$
\text { In } f=Q C A
$$

rinimum elemint
(6)

$$
\left\{\frac{1,1+\frac{1}{3}}{A n f=1^{\frac{2}{2}} A} d t \frac{1}{2}+\frac{1}{3^{2}}, \cdots\right\}
$$

- Aivomum dements

Hawimum element doun't bust.
(i) $\left\{\sin \frac{\pi}{6}, \sin \frac{2 \pi}{6}, \sin \frac{3 \pi}{6}, \cdots\right.$

$$
\begin{aligned}
& \text { (ai) tement }=1+\frac{1}{2}+\frac{1}{2^{3}}+\ldots=\frac{1}{1-\frac{1}{1}} \text { (fomitric series } \\
& \text { sup: }=24 \mathrm{~A} \\
& a+a x+a^{4}+\ldots=\frac{a}{1-x}-18 x \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\sin \frac{3 \pi}{6}=\sin \frac{\pi}{2}=1 \in A \quad \sin \frac{3 \pi}{6}=\sin \frac{3 \pi}{2}=-1 \in A \\
\sup \text { \& raximum eleinent } \\
\text { Inf } 2
\end{array}
\end{aligned}
$$

(8) $\left\{\frac{3 n^{2}}{n^{2}+3}: n \in \mathbb{N}\right\} \neq\left[\frac{3}{4}, 3\right) \rightarrow$ As it dorsn't jump

$$
\begin{aligned}
& f(x)=\frac{3 x^{2}}{x^{2}+3} \text { is even } \\
& f^{\prime}(x)=\frac{\left(x^{2}+3\right)(6 x)-3 x^{2}(2 x)}{\left(x^{2}+3\right)^{2}}=\frac{18 x}{\left(x^{2}+3\right)^{2}}<0 \text { if } x>0 \\
& \left.\frac{d y}{d x}\right|_{x=0}=0 \Rightarrow \text { Tangent } / 1 \text { to } x \text {-axis } \\
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{2}+3} \\
& =\lim _{x \rightarrow \infty} \frac{3}{6 x}=3 \\
& \text { (x) } \lim _{x \rightarrow \infty} \frac{3}{1+\frac{3}{x^{2}}}=3 \\
& \lim _{x \rightarrow-\infty} f(x)=3 \\
& \lim _{x \rightarrow \infty} f^{\prime}(x)=\lim _{x \rightarrow \infty} \frac{18 x}{\left(x^{2}+3\right)^{2}}=\lim _{x \rightarrow \pm \infty} f(x)=3 \\
& \text { sup }=3 \notin A \\
& \text { Manimum element doesn't exist } A=\frac{18}{2\left(x^{2}+3\right) \times 2 x}=0 \Rightarrow 11 \text { to } y=3 \\
& \text { In } A=\text { Minimum element. }
\end{aligned}
$$

(9) $\left\{\frac{n^{2}}{2^{n}}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& f(x)=\frac{x^{2}}{2^{x}} \\
& f^{\prime}(x)=\frac{2^{x} \cdot 2 x-x^{2} \cdot 2^{x} \cdot \log _{e} 2}{2^{2 x}}=\frac{2 x-x^{2} \log _{e} 2}{2^{x}}=\frac{x\left[2-x \log _{e^{2}}\right]}{2^{x}}
\end{aligned}
$$

If $x>0$, then $2-x \log _{e} 2>0 \Rightarrow\left(\log _{e} 2\right) x<2$

$$
\log _{e} 2>0 \Rightarrow x<\frac{2}{\log _{e} 2}=\frac{2}{\log _{10} 2} \times \log _{10} e=\frac{2}{0.301} \times 0.4343=2.8
$$

* $f(x)=\log _{a} x$

$$
\begin{aligned}
& \text { If } 0<x<\frac{2}{\log _{e^{2}}} \\
& f^{\prime}(x)>0 \\
& \text { If } x>2 \Rightarrow f^{\prime}(x)<0 \\
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{2 x}{2 x\left(\log _{e} 2\right)}=\lim _{x \rightarrow \infty} \frac{2}{2^{x}\left(\log _{e} 22^{2}\right.}=0 \\
& \text { Inf }=0 \notin A \Rightarrow \text { Minimum element doesn't exist } \\
& n=2 \Rightarrow \frac{n^{2}}{2^{n}}=\frac{2^{2}}{2^{2}}=1 \\
& n=3 \Rightarrow \frac{n^{2}}{2^{n}}=\frac{9}{8}>1=\text { sup } \in A \\
&
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \left\{x \in \mathbb{R} \cdot x^{2}-2 x-5<0\right\}=(1-\sqrt{6}, 1+\sqrt{6}) \\
& D=(\sqrt{4+20})^{2}=\sqrt{8} 24>0 \\
& \Rightarrow x=2 \pm \sqrt{24}=1 \pm \sqrt{6} \\
& 2
\end{aligned}
$$

\Rightarrow Maximum and minimum element, don't exist.
(II)

$$
\begin{aligned}
& \left\{x \in \mathbb{R}^{*}: x<\frac{1}{x}\right\}=(-\infty,-1) \cup(0,1) \\
& \text { Sup }=1 \notin A \\
& \text { Inf and Minimum and } \\
& \text { Maximum element doves exist }
\end{aligned}
$$

* $A \neq \varnothing, A \subset \mathbb{R}$

If ω is not an U.B. of A, then F an element $a \in A$ sit. $\omega<a$
If ω is not $a \cdot L \cdot B$ of A, then
Fan element $a \in A$ sit. $\omega>a$

* $A \neq \varnothing, A \subseteq \mathbb{R}$
s: supremum of A
If $\omega<s$, then ω is not an U.B. of Ares an element $a_{w} \in A$ s.t. $\omega<a_{w}$ (depending on ω)
* Result: If $A \neq \varnothing, A \subseteq \mathbb{R}$, then a number s is a supremum of A iff.
(1) S: upper bound of A
(2) For any $\varepsilon>0$, there exists an $a \in A$ sst. s- $\varepsilon<a$

Q Which of the following is cares true?
(1) inf. $\left\{n^{(-1)^{n}}: n \in \mathbb{N}\right\}$ doesn't exist.
(2) inf. $\left\{n^{(-1)^{\prime}}: n \in \mathbb{N}\right\}$ equals zero

(4) $\left\{n^{(-1)^{n}}: n \in \mathbb{N}\right\}$ doesnot possesses a smallest number.

Sd": $\left\{\left(\frac{1}{1}, 2, \frac{1}{3}, 4,4 \frac{1}{5}, 6, \ldots\right\}\right.$ tend to $0 \quad$ Inf $=0 \notin A$
Minimum element doesn't exist
As even nos. are infinite, \therefore, sup not exists and hence maximum element doesn't exist.

Q Let A be a nonempty bounded below sulset of R. Prove $\inf A=-\sup \{-a: a \in A\}$
San. $B=\{-a: a \in A\}$
Suppose inf $A=7$
TBS: $\sup B=-t$
（1）D：$-a \leq t t-a \in B$ i．e．$a \geq t \quad$ aeA which is true
（a） b $s<-t$
Is is inget an U．B of 8

$$
\begin{aligned}
& \text { Ts w in net an u. B. of B } \\
& \text { w o } A \rightarrow 7 \text { ande } A \text { s.t daw } \\
& g^{\prime}+6 \cdot \text { of } A
\end{aligned}
$$

\Rightarrow（स）$>=\omega$ is not an U．B．of B
ilement of $B(\because \quad x \in A)$
\＆If A，B are non empty lounded above subsets of \mathbb{R} ．Then shous $\sup (A \cup B)=\sup \{\sup A, \sup B\}$
Se⿻丷木： $\operatorname{set} \sup A=s_{1} \quad \sup B=s_{2}$
IS $\sup (A \cup B)-s u p\left\{\delta_{1}, \delta_{2}\right\}=s\left(i . e s_{1} \leq s+s_{2} \leq s\right)$
（1） $\left.\begin{array}{l}s \geqslant s_{1} \geqslant a \forall a \in A \\ s \geqslant s_{2} \geqslant d \forall b \in B\end{array}\right] \Rightarrow s \geqslant c \forall c \in A \cup B$
（2）Let $\omega<s$
cose I $s=s_{1}$
$w<s$ I．e．$w<s_{1} \Rightarrow \omega$ can＇t be a U．B．of $A(a s \exists a \in A$ s．t．$\omega<a) \Rightarrow \omega^{\prime}$ an＇t be a $u \cdot B \cdot$ of $A \cup B$
Cos IT：$s=s_{2}$
$\bar{w} s$ L．e．$w<s_{2} \Rightarrow w$ can＇t be $a \cdot u \cdot B$ ．of $B(a s \nexists A \in B$ s．t．$\omega<b) \Rightarrow \omega$ can＇t be $a U \cdot B \cdot$ of $A \cup B$ ，
so， $\sup (A \cup B)=s$ ．
（2）（4）How to show z is an infimum of A ？
（1） $1: 1 \cdot 8$ of A
（2）If $\omega>t$ ，ω can＇t be L．B．
（B）How to show B is a suptremum of A ？
（1）$B: U .8$ of A
（2）If $\omega<s, \omega$ can＇t be U．B．
＊A ：non empty sulset of \mathbb{R}

$$
\begin{aligned}
& \sup A=s, \\
& t \in \mathbb{R}, t>s \Rightarrow t \notin A
\end{aligned}
$$

Q A : non empty bounded subset of R Show inf $A \subseteq$ sup. A
Son. Set $a \in A$

$$
\left.\begin{array}{l}
\operatorname{cit} a \in A \\
\sin A \leq a \\
\sup A \geqslant a
\end{array}\right] \Rightarrow \inf A \leq \sup A
$$

Q A, B : non empty subsets of \mathbb{R} $a \leq b \forall a \in A, b \in B$

Show $\sup A \leq \inf B$.
So ${ }^{n}$. Every element of B is an $U \cdot B$. of $A \Rightarrow A$ is bounded above It is sufficient to show inf B is an $U \cdot B$. of A
Deny(0) There exists an element, say $\alpha \in A$ st inf $B<\alpha$
Case I: inf $B \in B$?
inf $B \in B \quad \& \alpha \in A \Rightarrow \alpha \leq \operatorname{in} \beta$ B $b^{\sin } \beta B \quad \alpha \in A$
Also, by number limit above statement inf $B<\alpha \Rightarrow \Leftarrow(\therefore a \leq b)$
Case II: inf $B \notin B$
Can α be a lower bound of B ?
No, inf B is greatest $l \cdot$. of of B
α : $\operatorname{not} a l \cdot b$. of $B \Rightarrow \sharp a \beta \in B$ s.t. $\beta<\alpha \Rightarrow \leq(: a \leq b)$
Hence, our deny is wrong $f(1)$ is correct.
$\therefore \sup A \leq \operatorname{Inf} B(\cdot \sup A$ is the lowest U.B. of $A)$
of observe: each element of B is an U.B. of A

$$
\therefore \sup A \subset b \notin b \in B
$$

$\Rightarrow \sup A$ is a lours bound of B
$\Rightarrow \quad \inf B \geqslant \sup A$

* Tautology (Logical Reasoning): $P \Rightarrow Q$ True/False

True: $P^{2} \Rightarrow Q^{2}$
False $P^{v} \Rightarrow Q^{x}$

* If P is not true then $P \rightarrow Q$ is time.

Ts ban 4. B. of x ?
Q. Show that the imply sit ϕ \&A, where A is any set.
so": Check $x e q \rightarrow 2 \in A$ is true or Not ? (or validity) Yes it is true : tower true

- Bounded set Bounded altar as well as bounded below
- Seundedruss of the empty set ϕ :

Pick a real \# m
Is' m an $4 \cdot B$ of ϕ ?
Check if it is true? Yes
As $\frac{x \in \ddagger \Rightarrow x \leq m}{\text { Nave that }}$ is true
(7) Every real numbers is an super bound of the empty set.
(2) Fever roil number is an lours, bound of the empty set.

* The empty set is a bounded set.
- Arviem of completeness of R.
\% $\phi \neq A \subseteq R, A:$ bounded above, tenithos the least upper bound
Statement. terr non-emply sulust of R that is bounded above, hos the least upper bound.
Significance of the loper 'nen-empty'?

$$
\begin{aligned}
& \text { l. } u \text { b. of } \phi \rightarrow \text { It doldn't east } \\
& \text { gle.b of } \phi \rightarrow \text { it deign' } t \text { elicit } \underset{0}{\stackrel{1}{2} \rightarrow \rightarrow}
\end{aligned}
$$

(- Supermen \& infinuin of ϕ don't exist.

- tedended Red number system: $\mathbb{R} \cup\{+\infty,-\infty\}$

$$
\left.\begin{array}{l}
\sup \phi=-\infty \\
\text { inf } \phi=+\infty
\end{array}\right] \text { surge }
$$

Truichatomy law

$$
R=(-\infty, \infty)
$$

Thid \rightarrow Thule Chotus \rightarrow Outting

* $A \neq \varnothing, A \subseteq \mathbb{R}, A:$ Bownded
if $x \in A$, inf $A \leq x<\operatorname{dup} A \Rightarrow$ inf $A \leq$ sup A
Not true for empy sut as $x \notin A$
* When inf $A=\sup A$?
when A is singliton, l.g., $A=\{1\}$
* Result: The set of all rational mambres(i) is not complete.

Prest Conwider $A=\left\{a \in Q: a \geqslant 0, a^{2}<2\right\}$

$$
1 \in A \Rightarrow A \neq \emptyset
$$

2 is an U. B of $A \rightarrow A$ is bounded aboet
Goum: A has mo least U.B in 2
Lat if $\sup A=k$
Cous I: $k^{2}=2$ Cuse II: $k^{2}<2 \quad$ aue II: $k^{2}>2$ imposible cuel $\quad y \in A] \Rightarrow E(\quad y$ is an u. B of $A] \rightarrow E$ $(\because t$ the y no suh woforl $, y, \quad y<k$
\therefore Our assumption is lerong \Rightarrow There dornnt ixist any k.
houkh $y=\frac{4+3 k}{3+2 k}\left(y=\frac{2 a+b k}{b+a k}\right)$

$$
\lim _{k \rightarrow \infty} t y=\lim _{k \rightarrow \infty} \frac{4+3 k}{3+2 k}=\lim _{k \rightarrow \infty} \frac{4 / k+3}{3 / k+2}=\frac{3}{2}
$$

If $R \in Q$, then $y \in Q$
Gul I: \quad o $k^{2}<2$

$$
^{}\left[\begin{array}{l}
y \in A \rightarrow y^{2}-2=\left(\left(\frac{4+3 k}{3+2 k}\right)^{2}-2\right)=\frac{k^{2}-2}{\left((3+2 k)^{2}\right.}<0 \Rightarrow y^{2}-2<0 \Rightarrow y^{2}<2 \\
y>k \rightarrow y-k=\frac{2\left(2+k^{2}\right)}{3+2 k}-k=\frac{4-2 x^{2}}{3+2 k}>y-k>0 \text { i.e. } \gg k>k \\
3+2 k
\end{array}\right.
$$

- Matid inturual Progonty:

$$
\left.\bigcap_{n} I_{n} \neq \emptyset \& I_{n}=1 Q_{n}, b_{n}\right\} \text { 甘nen }
$$

* $\quad A_{1} \geq A_{2} \geq A_{3} \geq A_{3}$

$$
A_{1} \cap A_{2}=A_{2} \quad A_{1} \cap A_{2} \cap A_{3}=A_{3} \quad A_{1} \cap A_{2} \cap A_{3} \cap A_{4}=A_{4}
$$

- Douht: $I_{1} \cap I_{2} \cap I_{3} \cap \ldots \cap I_{n} \cap \ldots=\phi$? Whe will prove $\sum_{n=1}^{\text {se }} I_{n} \neq \phi$
$A=\left\{a_{1}, a_{2}, a_{3}, \ldots=1 \rightarrow\right.$ alt and ph. of intervals
$b=\left\{b_{1}, b_{2}, b_{3},-,\right\} \rightarrow x$ ight and pos. Af intervals
claim: in is an upide lisund of A frieN $m, n \in \mathbb{N}$

$$
\left.\begin{array}{cc}
m<n & m>n \\
a_{m n} \leqslant a_{n} \leqslant b_{n} & a_{m} \leq b, b_{n} \\
a_{m} \leq b_{n} & a_{m} \leq b_{m}
\end{array} \quad a_{m n} \leq b_{m n}=b_{n}\right] \Rightarrow a_{m} \leq b_{n}
$$

\Rightarrow roch bn is an wpper bound of A.
\Rightarrow Ar is bourded abotey
By Axich of comblitenusi, sup A existe.
Suppeye sup $A=x$

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
x \leq b_{n} \forall n \in \mathbb{N} \\
a_{n} \leq x+n \in \mathbb{N}
\end{array}\right\} \Rightarrow a_{n} \leq x \leq b_{n} \forall n \in \mathbb{N} \\
& x \in I_{n} \forall n \in \mathbb{N} \\
& x \in \overbrace{n \in \mathbb{N}} I_{n} \Rightarrow \bigcap_{n \in \mathbb{N}} I_{n} \neq \phi
\end{aligned}
$$

207. Aechimadean prepurty.
(i) fown any real numalur x, there uists a natural rumber n s.t. $x<n$
Aase): Kit if posilde, \mathbb{N} be bouncled aboere
$A \circ C$ sup N vists

$$
\begin{aligned}
& \sup \mathbb{N}=\alpha \\
& n \leqslant \alpha \quad \forall n \in \mathbb{N}
\end{aligned}
$$

$\alpha-1$: Is it an U.B. of \mathbb{N} ? No
f an $m \in \mathbb{N}$ s.t. $\alpha-1<m \Rightarrow \alpha<m+1 \Rightarrow \leftarrow(\because m+1 \in \mathbb{N}$ as $m \in \mathbb{N})$
\therefore Our assumption is wrong,
(ii) lien any positive real number ε, 7 a natural number $n s i \frac{1}{n}<\varepsilon$ Proof: Let $\varepsilon>0$ be any the real $n 0, \therefore \frac{1}{\varepsilon}>0$ is also a real $n o$. By (i), 7 a natural no. n.s.t., $\frac{1}{\varepsilon}<n \Rightarrow \frac{1}{n}<\varepsilon$

$$
\varepsilon=b-a
$$

$a<b \Rightarrow b-a>0 \Rightarrow \varepsilon>0 \Rightarrow$

$$
m \varepsilon>1 \Rightarrow m b-m a>1
$$

F anatural no.ms.t. $\frac{1}{m}<\varepsilon$
ie. $m \varepsilon>$

* There exists a natural number, say n, st. $m a<n<m b$

$$
\Rightarrow a<\frac{n}{m}<b
$$

$m \rightarrow$ Rational number

* Result (Density theorem for \&): given any two distinct real numbers $a<b$, there exists a rational number brturen them.

$$
\begin{aligned}
& 0<a<b \Rightarrow 0<m a<m b \Rightarrow 7 a n \in \mathbb{N} s t . m a<n<m b \\
& \Rightarrow 0<m a<n<m b \Rightarrow 0<a<\left(\frac{n}{m}\right)<b \\
& a<b<0 \Rightarrow m a<m b<0 \\
& \Rightarrow 0<-m b<-m a \Rightarrow 7 a n \in \mathbb{N} s t .-m b<n<-m a \\
& \Rightarrow 0<-m b<n<-m a \Rightarrow 0<-b<\frac{n}{m}<-a \Rightarrow a<-\frac{n}{m} \rightarrow b<0 \\
& \hline \text { Rational no. }
\end{aligned}
$$

(2) Result (Density theorem for $\mathbb{R} \mid 2)$: given any two distinct real numbers, there exists an irrational number beturen them.
Case I: $a \notin 2$

Que: $a \in 2$

If $\frac{\sqrt{2}}{n}<b-a$? Yes
Let $\frac{b-a}{\sqrt{2}}=\varepsilon$
the get an $n \in \mathbb{N}$ set. $\frac{1}{n}<\varepsilon \Rightarrow \frac{\sqrt{2}}{n}<b-a$.
$18 / 7 / 16$

- Modulus function: $|x|=\left\{\begin{aligned} x ; & x>0 \\ 0 ; & x=0 \\ -x ; & 2<0\end{aligned}\right.$
- Properties of modules function:
(1) $a, b \in \mathbb{R}$

$$
|a b|=|a||b|
$$

Cases $a \geqslant 0, b \geqslant 0 \Rightarrow|a|=a,|b|=b$

$$
\begin{aligned}
& a b \geqslant 0 \Rightarrow|a b|=a b \\
& |a||b|=a b=|a b|
\end{aligned}
$$

Case I: $a<0, b \geqslant 0 \Rightarrow|a|=-a,|b|=b$

$$
\begin{aligned}
& a b^{6} \leq 0 \Rightarrow|a b|=-a b \\
& |a||b|=-a b=|a b|
\end{aligned}
$$

Coss: $a \geqslant 0, b \leqslant 0 \Rightarrow|a|=a,|b|=-b$

$$
\begin{aligned}
& a b^{2} \leq 0 \Rightarrow|a b|=-a b \\
& |a||b| E+a \cdot(-b)=-a b=|a b|
\end{aligned}
$$

QesTV) $a \leq 0, b \leq 0 \Rightarrow|a|=-a,|b|=-b$

$$
\begin{aligned}
& a b=0 \Rightarrow|a b|=+a b \\
& |a||b|=(-a) \cdot(-b)=a b=|a b|
\end{aligned}
$$

(2) $|x|=\max \{x,-x\} \Rightarrow x \leqslant|x|$
(3) $|a|^{2}=a^{2}$

Case I: $a \leqslant 0 \Rightarrow|a|=-a \quad$ coset: $a \geqslant 0 \Rightarrow|a|=a$

$$
|a|^{2}=(-a)^{2}=a^{2}
$$

$$
|a|^{2}=a^{2}
$$

$$
\begin{aligned}
& x^{2}<y^{2} \Rightarrow x<y \\
& x-\left(\frac{1}{2}\right)^{2}<\left(-3 r^{2} \Rightarrow 2<-3\right.
\end{aligned}
$$

(a) $070,1 a 1$ distancl of a fremio: \qquad $|a| \leqslant c \Leftrightarrow-c \leqslant a \leqslant c$
(5) $c>0$

$$
|a|<c \Leftrightarrow-c<a<c
$$

* Sum of any two sides of a triangle (exceeds the third side
*) sifference of any two sides of a triengre is less than the thurd side.
(ج) $|\vec{a}|+|\vec{b}| \geqslant|\vec{a}+\vec{b}|$
(2) $|\vec{a}|+|\vec{b}| \geqslant|\vec{a}-\vec{b}|$
(3) $||\vec{a}|-|\vec{b}|| \leqslant|\vec{a}-\vec{b}|$
* $a, b \in \mathbb{R}$
(1) $|a+b| \leq|a|+|b| c \mid$ Triangle inequatites
(2) $|a-b| \leq|a|+|b| \quad|a|-|b||\leq|a-b|$ (as ur provered with hetp of theargec)

Proof. ((L.H.S $)^{2}=\left(a+\left.b\right|^{2}=(a+b)^{2}=a^{2}+b^{2}+2 a b\right.$ - (1)

$$
\begin{equation*}
\left(l \cdot+(-5 \cdot)^{2}\right)=(|a|+|b|)^{2}=|a|^{2}+|b|^{2}+2|a||b|=a^{2}+b^{2}+2|a b| \tag{2}
\end{equation*}
$$

Compare (1) \& (2)

$$
\text { As } a b \leq|a b| \rightarrow(H S S)^{2}<(\text { RHS })^{2} \Rightarrow \text { LHS } \rightarrow \text { RHS }(\because L H S R H S \geqslant 0)
$$

(2) Put $b=-b$ in (1) $(-b$ at place of $b)$

$$
\begin{aligned}
& |a+(-b)|=\gamma a-b a|=|a|+|-b|=|a|+|b| \\
& \text { i.e. }|a-b|=|a|+|b|
\end{aligned}
$$

(3) Put $a=a-b$ in (1)

$$
\begin{align*}
& \mid a-b)+b|\leq|a-b|+|b| \Rightarrow| a|-|b| \leq|a-b| \\
& \text { Put } b=b-a \text { in } 1 \\
& |a+(b-a)| \leq|a|+|b-a| \Rightarrow-|a|+|b| \leq|b-a| \\
& \Rightarrow-(|a|-|b|) \leq|a-b|-\text { B } \tag{B}\\
& \text { (A) \& B } \Rightarrow||a|-|b|| \leq|a-b|
\end{align*}
$$

$*$ If $x, y \geqslant 0$ and $x^{2} \leqslant y^{2}$, then $x \leqslant y$
\otimes If $x, y \leqslant 0$ and $x^{2} \leqslant y^{2}$, then $x \geqslant y$
SO $A=\{x \in \mathbb{R}:|2 x+1|<3\} \rightarrow$ Set -builder form

$$
|2 x+1|<3 \Rightarrow 2\left|x+\frac{1}{2}\right|<3 \Rightarrow\left|x+\frac{1}{2}\right|<\frac{3}{2}
$$

Distance || $1 \times 8+\frac{-1}{2}$
$\Rightarrow\left|x-\left(-\frac{1}{2}\right)\right|<\frac{3}{2}$

$x \in\left(-\frac{1}{2}-\frac{3}{2},-\frac{1}{2}+\frac{3}{2}\right)$ i.e. $x \in(-2,1)$

$$
y=-(2 x+1) \quad y=2 x+1 \Rightarrow 2 x+1=3-x=1
$$

$$
\Rightarrow-(2 x+1)=3 \Rightarrow x=-2
$$

(2)

*

$$
\begin{aligned}
& |x-a|<b \Rightarrow b>0(\because|x-a|>0) \\
& \Rightarrow x \in(a-b, a+b) \\
& |x-a| \leqslant b \Rightarrow b \geqslant 0 \Rightarrow x \in[a-b, a+b]
\end{aligned}
$$

* A Bounded non empty suleset of $\mathbb{R} \longleftrightarrow \underset{k_{1}}{A}$ lies blew $k_{1} t k_{2} k_{2} \longrightarrow$ k_{1} : lower bound of $A \quad k_{2}$: upper bound of A Case I: $k_{1}, k_{2}>0$

Case II: $k_{1}, k_{2}<0$
Case III: $k_{1}<0, k_{2}>0$

$$
x \in A \Rightarrow|x| \leq\left\{\max \cdot\left\{\left|k_{1}\right|,\left|k_{2}\right|\right\}=K\right.
$$

* If A is a non empty bounded subset of \mathbb{R}, then 7 a $K>0$ s.t.

$$
\frac{|x| \leq K}{-K \leq x \leq K} \quad \forall x \in A
$$

* $f: A \rightarrow \mathbb{R}$
(1) If Range of f is bounded above, then f is called a bounded above function.
(2) If Range of is bounded below, then f is called a bounded below function.
(3) If Range of f is bounded, then f is called a bounded function. e.g. of $\mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$

$$
\text { Range }(f)=[0, \infty)
$$

f is bounded below but not bounded above.
$\star f, g: A \rightarrow \mathbb{R}, A \neq \phi \rightarrow$ Bounded fund.

$$
f(x) \leqslant g(x) \forall x \in A
$$

$f(A)$: range of $f=\{f(x): x \in A\} \quad g(A):$ range of $g=\{g(x): x \in A\}$ then show $\sup (f(A)) \leq \sup (g(A))$

$$
\text { Sup }=6 \rightarrow \begin{array}{l|l}
f & g \\
\hline 5 N & 7 N \\
3 N & 4 N \rightarrow \operatorname{Inf} 4 \\
6 N & 10 \mathrm{~N}
\end{array}
$$

Proof: $g(x) \in g(A)$
$\Rightarrow g(x) \leq \sup (g(A)) \forall x \in A\} \Rightarrow f(x) \leqslant \sup (g(A)) \forall x \in A$ $f(x) \leqslant g(x) \quad \forall x \in A \quad \sup (g(A))$ is an $U \cdot B \cdot$ of $f(A)$ Smallest $U \cdot B \cdot \sup (f(A)) \approx \sup (g(A)) \rightarrow A n y U \cdot B$.
$\frac{\text { TAM }}{2015}$ Let f, $g:[0,1] \rightarrow[0,1]$ be bounded functions. Suppose $R(f) \& R(g)$ represent their respective ranges. Which of the following is (are) true?
(a) $f(x) \leq g(x)$ for all $x \in[0,1] \Rightarrow \sup R(f) \leq$ inf $R(g)$
(h) $f(x) \leq g(x)$ for some $x \in[0,1] \Rightarrow$ inf $R(f) \leq \sup R(g)$
(c) $f(x) \leqslant g(y)$ for some $x, y \in[0,1] \Rightarrow$ inf $R(f) \leqslant$ sup $R(g)$
(a) $f(x) \leq g(y)$ for all $x, y \in[0,1] \Rightarrow \sup R(f) \leq$ inf $R(g)$

So ${ }^{n}$: (a) $\sup R(f) \neq \inf R(g)$
eeg. $g(x)= \begin{cases}x & ; 0 \leq x \leq \frac{1}{2} \\ 1-x & \left.\frac{1}{2} \leq x \leq\right\}\end{cases}$ $f(x)= \begin{cases}x ; & 0 \leq x \leq \frac{1}{4} \\ \frac{1}{2} x ; & \frac{1}{4} \leq x \leq \frac{1}{2} \\ -\frac{1}{2} ; \frac{1}{2} \leq x \leq \frac{3}{4} \\ 1-x^{2} ; & \frac{3}{4} \leq x \leq 1\end{cases}$

Let $f=g$ then $\sup R(f) \geq$.nf $R(f)=$ Inf $R(g)$
$(\alpha ; f(\alpha)$ Inf $R(f) \leq f(\alpha) \leq g(\alpha) \leq \sup R(g)$
(c) Inf. $R(f) \leqslant f(\alpha) \leqslant g(\beta) \leq \sup R(g)$

$$
\text { . } f(\alpha)
$$

$g_{\text {(}}{ }^{\prime}$
(d) $\left[\begin{array}{l}a \leq b \forall a \in A, \forall b \in B \\ \Rightarrow \sup A \leq \sin B\end{array}\right](g-25)$

Bnd-to-one cortespacidence \rightarrow Byective func " oussnwe rage =o. 35 one-cul + onto fure ante

If can't be below this line as

$$
a \leq b \quad \forall a \in R(f) \forall b \in R(g)]
$$

\Rightarrow Atup $R(f) \leq \sin f R(g)$

- countalulity of sets:

Rational \& 44 rationals might be in \rightarrow hreng \rightarrow proved by leorge the some proportion in $(a, b) \quad \#$ of R1Q $\gg \#$ of 2 \&canfor
A, \hat{B} sets
Gudinality: size of set
A $\& 8$ have the same cardinality if 7
ruits a one-to-one \& onto funcn biw $A \& B$

* \quad, E

$$
f: \mathbb{N} \rightarrow E \text { by } f(n)=2 n \rightarrow \text { Byective }
$$

$$
E \subsetneq \mathbb{N}
$$

same cardinality
$|E|=|\mathbb{N}| \rightarrow$ ondy iothen cardinality is infinial
Sespite $E \subseteq \mathbb{N}, E \& \mathbb{N}$ have the same cardinality.

$$
\begin{align*}
& \mathbb{N}, \mathbb{Z} \tag{0}\\
& n: \text { uen } ; f(n)=\frac{-n}{2} \\
& n: \text { sdd } ; f(n)=\frac{n-1}{2} \\
& f: N \rightarrow \mathbb{Z} \\
& \text { Bucctre } \leftarrow\left(f(n)=\left\{\begin{array}{l}
\frac{-n}{2} ; n: \text { even } \\
\frac{n-1}{2} ; n: \text { odd } \\
\end{array},|\mathbb{N}|=|\mathbb{Z}|\right.\right.
\end{align*}
$$

$$
\text { * } \begin{aligned}
& y=\frac{x}{x^{2}-1}=\frac{x}{(x+1)(x-1)} \rightarrow \text { odd } \\
& \frac{d y}{d x}=\frac{x^{2}-1-2 x^{2}}{\left(x^{2}-1\right)^{2}}=-\left[\frac{x^{2}+1}{\left(x^{2}-1\right)^{2}}\right]<0 \\
&\left.\frac{d y}{d x}\right|_{0}=-1 \\
&f:(-1,1) \rightarrow \mathbb{R}) \rightarrow \text { Bijection } \\
& f(x)=\frac{x}{x^{2}-1} \\
& \Rightarrow|(-1,1)|=|\mathbb{R}|
\end{aligned}
$$

Claim: $|(a, b)|=|\mathbb{R}|, a<b$
Proof: $g:(a, b) \longrightarrow(-1,1)$

$$
\left.\begin{array}{l}
y-(-1)=\left[\frac{1-(-1)}{b-a}\right](x-a) \\
g \prime y=\left(\frac{2}{b-a}\right)(x-a)-1 \rightarrow \text { Bijection } \\
\quad f \circ g:(a, b) \rightarrow \mathbb{R} \text {. } \\
\text { Bijective }(\text { as } f \& g \text { are byectur) }
\end{array}\right)|(a, b)|=|\mathbb{R}|
$$

$\frac{10}{2014}$ Which of the following doesn't imply that $a=0$?
(1) For all $\varepsilon>0,0 \leq a<\varepsilon$
(2) For all $\varepsilon>0,-\varepsilon \leqslant a<\varepsilon$
(3) For all $\varepsilon>0, a<\varepsilon$
(4) For alt $\varepsilon>0,0 \leq a \leq \varepsilon$

So ln: (0) Ret if possible, $a \neq 0$, Then $a>0$
Set $\varepsilon=\frac{a}{2}$
$0 \leqslant a<\frac{a}{a}$, absurd
(2)

Let if possible, $a \neq 0$
$\operatorname{set} \varepsilon=\frac{|a|}{2}$

$$
a \notin\left(\frac{-\left.\hat{a}\right|^{-t}}{2}, \frac{|\hat{1}|}{2}\right)
$$

(3) a may be zee but a may be negative avo $\Rightarrow a \neq 0$ a can't be positive as $a<\varepsilon$.
(A) $0 \leq a \leq \frac{a}{2}$. absurd.
$\frac{D 4}{2015}$ Which of the following are true?
(a) $\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, 1\right]_{\underset{(0,1]}{ }}^{=}[0,1]$
(b) $\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, 1\right]=(0,1]$
(c) $n_{n=1}^{n}\left(1-\frac{1}{n}, 2\right]_{\sim[1,2]}=(1,2)$
(d) $\bigcap_{n=1}^{\infty}\left[1-\frac{1}{n}, 2\right]=[1,2]$

Sd ${ }^{n}(a)$ Whatever be $\varepsilon>0$, however small 7 an n_{0} (fixed natural no.) $\in \mathbb{N}$ set. $\frac{1}{n_{0}}<\varepsilon$

$$
[0,1] \times[0.0000001,1] x
$$

(b)

(c)

$$
\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n}=1 \quad \text { A } 1-\varepsilon \notin\left(1-\frac{1}{n}, 2\right]}{}
$$

$l \in\left(\frac{1-\frac{1}{n}}{<1} 2\right] \forall n \in \mathbb{N} \Rightarrow$ le $\bigcap_{n=1}^{\infty}\left(1 \frac{1-1}{n}, 2\right]$
0

$$
\begin{aligned}
& \text { For } \varepsilon>0, \exists \text { an } n_{0} \in \mathbb{N} \text { st } \frac{1}{n_{0}}<\varepsilon \Rightarrow \frac{-1}{n_{0}}>-\varepsilon \Rightarrow 1-\frac{1}{n_{0}}>1-\varepsilon \\
& 1-\varepsilon \in\left(1-\frac{1}{n_{0}}, 2\right] ? \frac{N_{0}}{=}\left(\because 1-\varepsilon<1-\frac{1}{n_{0}}\right) \\
& \therefore 1-\varepsilon \notin\left(1-\frac{1}{n_{0}}, 2\right] \Rightarrow 1-\varepsilon \notin n_{n=1}^{\infty}\left(\frac{\left.1-\frac{1}{n}, 2\right]}{4}\right.
\end{aligned}
$$

Nomumber less than 1 is in the intersection Is 1 in the intersection? Yes ($: 1$ is in each set)

$$
\begin{array}{cl}
A \subseteq B, A \cup B=B & A \geq B, A \cap B=B \\
A \subseteq B=C, A \cup B \cup C=C & A \geq B \geq C, A \cap B \cap C=C \quad
\end{array}
$$

Q(1) $\bigcap_{n=1}^{\infty}\left[\frac{3-\frac{1}{n}}{<3}, \frac{5+\frac{1}{n}}{25}\right]$
(2) $\bigcup_{n=1}^{\infty}\left(2+\frac{1}{n}, 5-\frac{1}{n}\right)$
(3) $\sum_{n=1}^{\infty}\left(0, \frac{1}{n}\right) \rightarrow$ Nested but internals ourenot closed.

(2)

$$
\begin{aligned}
& \sum_{2}^{1, \mathrm{~mm}} \mathrm{~m}_{3}^{3} \text { man }_{5}^{4} \\
& \bigcup_{n=1}^{\infty}\left[2+\frac{1}{n}, 5 \frac{-1}{n}\right]=(2,5)
\end{aligned}
$$

(3)

$$
\prod_{0}^{n} \prod_{n=1}^{n}\left[0, \frac{1}{n}\right)=\{0\}
$$

Nested but Nat closed intervals

$$
\text { If } I_{1} \geq I_{2} \geq I_{3} 2 \ldots \text {, then sen } \bigcap_{n=1}^{\infty} I_{n} \neq \varnothing
$$

It is necessary to mention "closed" in Nested Interval Preperiyy
$\frac{C M I}{2011}$ The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x}{x^{2}+1}$ (Odd) attains its supremum.
Se n: $y=\frac{x}{x^{2}+1} \Rightarrow \frac{d y}{d x}=\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{(1-x)(1+x)}{\left(x^{2}+1\right)^{2}}$
$f^{\prime}(0)=1 \Rightarrow$ Tangent makes an angle of 45°

Nether attains sup. nor sing. Here, of doesn'tatt ain its sup.

* "A B " means $A \& B$ have the same cardinality.
- Countable sets: $A:$ any set If $\mathbb{N} \sim A$, then A is s.t.b a countable set.
- Uncountable sets: Infinite set \& Not countable
* E, \mathbb{Z} are countable set $(\because \mathbb{N} \sim E$ \& $\mathbb{N} \sim \mathbb{Z})$
- A: countable set $\Rightarrow \mathbb{N} \sim A$
\Rightarrow There exists a one-to-one correspondence $f: N \rightarrow A$ Range $f \in A=\{f(1), f(2), f(3), \ldots\} \rightarrow$ Enumeration of A
* A countable set can be enumerated as $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$
* Result: The set Q of rationals is countable

$$
A_{n}=\left\{ \pm \frac{p}{q}: p, q \in \mathbb{N}, q \neq 0,(p, q)=1, p+q=n\right\}, n \geqslant 2
$$

$A_{1}=\left\{\frac{0}{1}\right\} \rightarrow$ Special case, we consider $n=0 \notin \mathbb{N}$ in this case only

$$
\begin{aligned}
& A_{2}=\left\{\frac{1}{1}, \frac{-1}{1}, \frac{2}{0}\right\} \quad A_{4}=\left\{\frac{1}{2}, \frac{-1}{2}, \frac{2}{1}, \frac{-2}{1}\right\} \\
& A_{4}=\left\{\frac{1}{3},-\frac{1}{3}, \frac{2}{2}, \frac{3}{1},-\frac{3}{1}\right\} \quad A_{5}=\left\{\frac{1}{4},-\frac{1}{4}, \frac{2}{3}, \frac{-2}{3}, \frac{3}{2},-\frac{3}{2}, \frac{4}{1}, \frac{-4}{1}\right\} \\
&
\end{aligned}
$$

(2) $\left.\left|A_{n}\right|<2^{(n+x-1} C_{x-1}\right),\left|A_{n}\right|$ is finite $\&$ is ky stan $2\left({ }^{n+2-1} C_{2-1}\right)$
(*) An is finite $\forall n \in \mathbb{N} \Rightarrow$ Onto
$n=30$ identical mangoes $r=5$: preen
Ways of distributing: ${ }^{n+x+} C_{x-1}$

* $m \neq n \Rightarrow A m \cap A_{n}=\phi \Rightarrow$ One-to-one $\left(l \cdot g \cdot \frac{22}{7} \in A_{29}\right)$ sumer NAD is ${ }^{\circ}{ }^{2} \operatorname{sum}^{2}$ of N ND D is n
*) $\frac{l}{m} \in Q,(l, m)=1$, then $\frac{l}{m} \in A_{|l|+|m|}$
* twery rational no. appears in exactly one An.
 So, 2 is enumerable.
* Result: The set \mathbb{R} of all real numbers is uncountable.

Proof: Let if possible, \mathbb{R} be countable "
$\therefore \mathbb{R}$ can be enumerated as $\mathbb{R}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \rightarrow$ list We are sure that each real number appears in this list. By N.I.P, we will show that there is a real no. Which is NOT in the list.
Take any non-empty closed interval I_{1} sit. $a_{1} \& I_{1}$
Take any non-empty closed interval $I_{2} \subseteq I_{1}$ sit. $a_{2} \notin I_{2}$ Take any noh-empty closed interval $I_{3} \in I_{2}$ sit. $a_{3} \notin I_{3}$
Take any non-empty closed interval $I_{n+1} \in I_{n}$ st. $a_{n+1} \notin I_{n+1}$ So, wee get a nest of closed intervals $I_{1} 2 I_{2} 2 I_{3} \geq \ldots s t a_{n+1} \& I_{n+1}$ Pick a number, say a no finelom the list, we have $a_{n_{0}} \notin I_{n_{0}}$

$$
\begin{aligned}
& \text { he have } a_{n_{0}} \& I_{n_{0}} \\
\Rightarrow & a_{n_{0}} \& \cap_{n=1} I_{n} \Rightarrow \bigcap_{n=1} I_{n}=\phi \text { (1) }
\end{aligned}
$$

Using. NIP, $\bigcap_{n=1}^{\infty} I_{n} \neq \phi \Rightarrow F a$ real no $(x) \in \mathbb{R}$ sit. $x \in \bigcap_{n=1}^{\infty} I_{n}-$ Q
Range \neq codominn \in Not in Range \Leftrightarrow Outside the lis Range \neq Codomain \in Not in Range $\&$ Outside the list (1) $\&$ (2) are contradictory $\Rightarrow 98^{0}$ fund ${ }^{n} f: \mathbb{N} \rightarrow \mathbb{R}$ which is onto

Con-to-one doesn't create puoberm, only ordo creates pesters

$$
f: \mathbb{N} \rightarrow \mathbb{R} \text { s.t. } f(n)=n \rightarrow \text { one-to-one) }
$$

$\therefore \mathbb{R}$ is uncountable.

* A,B: countable sets
$A \cup B$: Is it countable?

$$
a_{1} \text { p. } \quad \text { W.L.O.G, we can assume } A \cap B=\varnothing
$$

$$
\begin{aligned}
& a_{2} \\
& a_{3}
\end{aligned} b_{2} \text { as if } A \cap B \neq \phi \text {, then } f: \mathbb{N} \rightarrow A \cup B \text { is not one- to - one }
$$

$$
\begin{gathered}
a_{3}<b_{3} \\
\vdots
\end{gathered}
$$

$$
A \rightarrow f: \mathbb{N} \rightarrow A \rightarrow \text { Bijection }
$$

$$
B \rightarrow g: \mathbb{N} \rightarrow B^{-A}
$$

Bijection $h: \mathbb{N} \rightarrow A \cup B$ by $h(n)=\int f\left(\frac{n+1}{2}\right) ; n:$ odd

$$
h(1)=f(1) \quad h(2)=g(1) \quad h(3)=f(2) \quad h(4)=g(2) \ldots
$$

or $h(n)= \begin{cases}\frac{a_{n+1}}{2} & ; n \text { odd } \\ \frac{b_{n}}{2} ; n: \text { even }\end{cases}$

$$
\begin{aligned}
& h(1)=a_{1} \\
& h(2)=b_{1} \\
& h(3)=a_{2} \\
& h(4)=b_{2}
\end{aligned}
$$

If $A \cap B \neq \varnothing$, then we replace B by $B \mid A$

$$
A \cup B=A \cup(B / A) ; B \mid A \subseteq B \rightarrow \text { countable }
$$

If B / A is finite, then finite or countable

* The union of 2 countable sets is countable.
- Cardinality of R/R?

Let if possible, $\mathbb{R} \backslash \mathbb{Q}$ be countable

$$
\mathbb{R}=\mathbb{Q} \cup(\mathbb{R} \mid 2)
$$

2 countable assumed to be countable
$\Rightarrow R$ is countable $\Rightarrow \leftarrow$
\therefore Our assumption is wrong.

* The set of all irrational numbers ($\mathbb{R} \mid \mathcal{P}$) is uncountable
$\star \quad A_{1}, A_{2}, A_{3}, \ldots, A_{m}$: countable sets
m : finite $(m<\infty)$
$A_{1} \cup A_{2} \cup \ldots \cup A_{m}$: countable? Yes
$A_{1} \quad A_{2} \rightarrow A_{2} \backslash A_{1} \quad A_{3} \rightarrow A_{3}\left|\left\{A_{21}, A_{2}\right\} \ldots A_{m} \wedge A_{m}\right|\left\{A_{1}, A_{2}, \ldots, A_{m-1}\right\}$

\& Result: If $A_{1}, A_{2}, \ldots, A_{m}$: countable sets, then their
Finite many union $A_{1} \cup A_{2} \cup \ldots \cup A_{m}$ is countable
Finite union of countable sets
countrasy may $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$: countable sets.
countarle ser bo Countable union of countable sets
$\bigcup_{n=1}^{0} A_{n}$: Is it countable? Yes

* A finite union of countable sets is countable
* Accountable union of countable sets is countable.
* countable union of finite sets? It is countable $A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots$. finite sets

* Suppose A(infinits st) $\subseteq B, B$: countable set Is Acoundable? Yes

$$
m_{1}=\min \{n \in \mathbb{N}: f(n) \in A\}
$$

$$
m_{2}=\min \left\{n \in \mathbb{N}: f(n) \in A \mid f\left(m_{1}\right)\right\} .
$$

$$
m_{3}=m \min \left\{\mathbb{N}: f(n) \in A l\left\{f\left(m_{1},\right\}\right.\right.
$$

$$
\begin{aligned}
g: N \rightarrow A^{N} \text { by } g(1) & =f\left(m_{1}\right) \\
g(2) & =f\left(m_{2}\right) \\
g(k) & =f\left(m_{k}\right)
\end{aligned}
$$

$$
m_{k}=\min \left\{n \in \mathbb{N}: f(n) \in A \mid\left\{f(m)_{1}, \ldots\right.\right.
$$

(8) Result: The subsets of a countable set are countable or finite
$\frac{2 u}{2016}$ let x be a countable set suppose A is a subset of x, which is countable. Thin $\times \backslash A$
6) is empty
(b) is a finite set
(c) Can be uncountable
(6) Combe countable infinite
24. of, eg $X=$ 相 $A=\{2,3,4, \ldots\}$
(e) is countable infinite
A) $x \mid A=\{1\} \neq \varnothing$
b) $x=\mathbb{Z} \quad A=\mathbb{N}$

$$
x \mid A=\{0,-1,-2, \ldots\} \rightarrow \text { not fence }
$$

(0) $x \mid n \in A, s 0$, cant be uncountable se either finis or countable $A s x$ is countable $\& x \mid A$ is not finite, $\therefore X I A$ is countable
(0) $X=\mathbb{A} \quad A=\{2,3,4, \ldots\}, X \mid A=\{1\} \rightarrow$ not infinite.
$23 / 716$
*
\mathbb{R}

2
larger ∞ \& smaller ∞
uncountable infinity countable infinity
Is there any" infinity" which is "smaller "than countable infinity? No
A : countable set
$B \subseteq A$, either finite or countable infinite

* Countable infinity: smallest infinity; ever known
$\frac{\text { TIER }}{2014}$ There exists a function $f: \mathbb{Z} \rightarrow 2$ which
(a) is bijective \& increasing
(b) is onto \& decreasing
(c) is byectuie s.t $f(n) \geqslant 0 \geq n \leq 0$

So ln: (a)
The rational \# b/wf(1) \& $f(2)$
(d) has an uncountable image
 $f(2)$ can't be images of $\left.\frac{f(1)}{f}\right\}$ any point $\Rightarrow f$ is not onto $\underset{\rightarrow k}{ }$

Were sure $f(1) \neq f(2), f(1)<f(2)(\because$ Oni-to -one \Rightarrow St. inc.)
(b) (40.

Can't be - ? pt.

Let if possible, (b) be truce Fa $k \in \mathbb{Z}$ st. $f(k) \neq f(k+1)$ therurise Range(f) would be singleton
(C)
 not finite \Rightarrow countable set $\mathbb{Z}^{+} \rightarrow$ countable set

$$
Q=R_{0}^{+} \cup Q^{-}
$$

countable set

Thansand \rightarrow beyond human knowledge

$$
\mathbb{Z}=\mathbb{Z}^{+} \cup \mathbb{Z}^{-}{ }^{-}
$$

Ate Eve including zero
$g(n) \neq h(n) \forall n$ as their co-domains are disjoint.

- Algebraic Numbers: Roots of Polynomials with integer coefficients, not all zeroes, are called algebraic numbers.

D: Prove that each rational number is algebraic
sow: $P / q, p, q \in \mathbb{Z}, q \neq 0$

$$
q x-p=0 \text { has a so ln } p / q, q \neq 0
$$

$\because P / q$ is any rational number, \therefore each ration al number is algebraic
Q: Show $\sqrt{2}$ is an algebraic no.
Sex: $x^{2}-2=0$ has a $\operatorname{son}^{n} \sqrt{2}$
$\therefore \sqrt{2}$ is an algebraic no.

* An irrational number can be algelerala but not all irrationals are algebraic.
* Ire aren't algelraic

Transcendental nos: Real \#s which are not algebraic

- Liowille's Number: $\sum_{k=1}^{\infty} 10^{-k!} \rightarrow$ Irrational \#

$$
=10^{-1}+10^{-2}+10^{-6}+10^{-24}+\ldots
$$

$$
\begin{aligned}
& 10^{-1}+10^{-2}+10^{-6}+10^{-1-}+\ldots \\
& 0.1+0.01+0.000001+\cdots=0.110001000 \ldots .010 \ldots
\end{aligned}
$$

No repitition \& Noi-terminating, i Irrational no.

* Result: The open interval $(0,1)$ is uncountable.

Pussof Let if possible, $(0,1)$ be countable Then f a bijection $f: \mathbb{N} \rightarrow(0,1)$

$$
0 \leqslant a_{i} \leqslant 9
$$

$$
\operatorname{ora}_{i} \in\{0,1, \ldots, 9\}
$$

$$
\begin{aligned}
& (0,1)=\{f(1), f(2), f(3), \ldots\} \\
& x=0, b_{1} b_{2}, b_{3} \ldots, \in(0,1) \\
& \text { if } a_{11}=1, b_{1}=2 ; \text { if } a_{11} \neq 1, b_{1}=1 ; a_{11} \neq b_{1} \\
& \text { if } a_{22}=1, b_{2}=2 ; \text { if } a_{22} \neq 1, b_{2}=1 \quad a_{22} \neq b_{2} \\
& \vdots \\
& \text { if } a_{n n}=1, b_{n}=2 ; \text { if } a_{n n} \neq 1, b_{n}=1 \\
& \quad b_{n}= \begin{cases}2 ; & \text { if } a_{n n}=1 \\
1 ; & \text { if } a_{n n} \neq 1\end{cases}
\end{aligned}
$$

$b_{n} \neq a_{n n} \forall n \in \mathbb{N}$
$x \neq f(1)\left(\because 1^{\text {st }}\right.$ decimal pt, are distinct $)$
$x \neq f(2)\left(: 2^{\text {nd }}\right.$ decimal pt. are distinct)
$x \neq f(3) \quad\left(\because 3^{\text {ra }}\right.$ decimal pt. are distinct $)$
$x \neq f(n) \forall n \in \mathbb{N} \Rightarrow F$
\therefore Our assumption is wrong
$x \in(0,1)$ but $x \notin\{f(1), f(2), \ldots\}$
$\therefore f$ is not onto \& hence not briective
$\therefore(0,1)$ is uncountable.

$$
|(0,1)|=|\mathbb{R}|
$$

\star

NEED: $f:(0,1) \rightarrow(0,1) \times(0,1)$ one to one, onto

One-to-one but not Onto (hriesior pes.)

$$
\begin{aligned}
& 0 . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots \mapsto\left(0 . a_{1} a_{3} a_{5} \ldots, 0, a_{2} a_{4} a_{6} \ldots\right) \leftarrow f\left(0 . a_{1} a_{2} a_{3} \ldots\right) \\
& {\left[\begin{array}{l}
x=0 . a_{1} a_{2} a_{3} \ldots \mapsto\left(a_{1} a_{3} a_{5} \ldots, 0, a_{2} a_{4} a_{8} \ldots\right) \\
y=0 . b_{1} b_{2} b_{3} \ldots\left(0, b, b_{3} b_{5} \ldots, 0 . b_{2} b_{4} b_{6} \ldots\right) \\
x \neq y \Rightarrow f(x) \neq f(y) \Rightarrow 0 n e \text {-to -one }
\end{array}\right.}
\end{aligned}
$$

$\left(0, \alpha_{1} \alpha_{2} \alpha_{3} \ldots, 0, \beta_{1}, \beta_{2} \beta_{3} \ldots\right) \rightarrow$ Pick from the codomain i.e. $(0,1) \times(0)$

$$
0_{0, \alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \alpha_{3} \beta_{3} \ldots}
$$

$$
\Rightarrow \text { onto }
$$

$\frac{T I F R}{2012}$ True/False
There exists a byection between \mathbb{R}^{2} and the open interval $(0,1)$
Sell: $(0,1) \sim \mathbb{R}$

$$
\begin{aligned}
(0,1) \sim \frac{(0,1) \times(0,1)}{\mathbb{R} \times \mathbb{R} ? ~ Y e s} \Rightarrow(0,1) \sim \mathbb{R}^{2}(& \because(0,1) \sim \mathbb{R} \&(0,1) \sim \mathbb{R} \\
& \Rightarrow(0,1) \times(0,1) \sim \mathbb{R} \times \mathbb{R})
\end{aligned}
$$

- Transitive relation: $A \sim B \& B \sim C$, then $A \sim C$

$$
A \sim B \Rightarrow 7 \text { a bijection } f: A \rightarrow B\} \Rightarrow g \dot{\delta} \Rightarrow: A \rightarrow C
$$

$$
\left.\begin{array}{l}
A \sim B \Rightarrow 7 \text { a bijection } f: A \rightarrow B \\
B \sim C \Rightarrow 7 \text { a bijection } g: B \rightarrow C
\end{array}\right\} \Rightarrow g o f \sim: A \rightarrow C \Rightarrow A \sim C
$$

- Symmetric relation: $A \sim B \Rightarrow B \sim A$
$A \sim B \rightarrow 7$ a bijection $f: A \rightarrow B$

$$
\Rightarrow f^{-1}: B \rightarrow A \text { is a bijection } \Rightarrow B \sim A
$$

- Reflexive relation: $A \sim A$

$$
f: A \rightarrow A \text { by } f(x)=x \rightarrow \text { Byjection }
$$

* $A \sim B \& \subset \sim D$, then $A \times C \sim B \times D$
$A \sim B \Rightarrow 7$ a bijection $f: A \rightarrow B$
$C \sim D \Rightarrow F$ a bijection $g: C \rightarrow D$
NEED: $h: A \times C \longrightarrow B \times D$

$$
h(x, y)=(f(x), g(y))
$$

h is one -to -one

$$
\begin{aligned}
& \left.h\left(x_{1}, y_{1}\right)=h\left(x_{2}, y_{2}\right) \Rightarrow f\left(x_{1}\right), g\left(y_{1}\right)\right)=\left(f\left(x_{2}\right), g\left(y_{2}\right)\right) \\
& \quad \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \& g\left(y_{1}\right)=g\left(y_{2}\right) \Rightarrow x_{1}=x_{2} \& y_{1}=y_{2}(\because f \text { \& g arete } \\
& \Rightarrow\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)
\end{aligned}
$$

hisonto.

$$
\text { Let }(f(x), g(y)) \in B \times D \Rightarrow F(x, y) \in A \times C \text { sit. } h(x, y)=(f(x), g(y))
$$

$$
\therefore h \text { is a bijection }
$$

$$
\begin{aligned}
& A=\{1,2,3\} \quad B=\{a, b\} \\
& A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\} \text { pastime Prize Ho. } 47 \\
& \therefore|(0,1)|=|(0,1) \times(0,1)|
\end{aligned}
$$

(8)

$$
\begin{gathered}
\text { (*) } \begin{aligned}
&|\mathbb{R}|=\left|\mathbb{R}^{2}\right| \quad\left(0,(0,1) \sim \mathbb{R}+(0,1) \sim \mathbb{R}^{2}\right) \\
&=\left|\mathbb{R}^{3}\right|=\left|\mathbb{R}^{4}\right|=\ldots=\left|\mathbb{R}^{m}\right| \text {, where } m \in \mathbb{N} \\
& \text { Byection } \& f:(0,1) \rightarrow(0,1) \times(0,1) \times(0,1) \sim \mathbb{R}^{3}
\end{aligned}
\end{gathered}
$$

$30 / 7 / 16$

* As final set

$$
\begin{aligned}
& |A|=n<\infty \\
& |P(A)|=2^{n} \\
& f: A \longrightarrow P(A)
\end{aligned}
$$

Is fa onto function? X/2 No
Whatever be \mid Range $(f) \mid \leq n$

$$
\text { Range }(f) \& P(A) \forall f
$$

If A is a finite set, then there exist, no onto function

$$
f: A \rightarrow P(A)
$$

What About infinite sets? Yes

- Cantor's Theoum: If A is a set, then there exists no function $f: A \longrightarrow P(A)$, that is onto.
Bueof Rit if possible, there exist $f: A \rightarrow P(A)$ which is onto.

$$
B=\left\{x \in A: x \notin f \frac{f x\}}{\text { subset of } A}\right.
$$

Now, of is onto, $f: 7$ some $\alpha \in A$
such that $f(\alpha)=B$

$$
\begin{aligned}
& f(x)=\{x\{A: x \& f(x)\} \\
& \text { Is } \propto \& B ?
\end{aligned}
$$

Let $\alpha \in B$, then $\alpha \notin f(\alpha)$ i.e $\alpha \notin B \Rightarrow \Leftarrow \rightarrow$ So, $x \neq$ no

$$
\left\{\begin{array}{l}
\{: A \rightarrow P(A) \text { Ont-to-one } \\
x \longmapsto\{x\}
\end{array}\right.
$$

Impossible $<f: A \rightarrow P(A)$ onto

CONTINUUM HYPOTHESIS - There is no infinity bl them Classtime Page No. 49

* Set containing all the sets in the universe? No, such set exists, eg: $|\mathbb{R}| \leq|P(\mathbb{R})|<\mid P(\mathbb{R} P(\mathbb{R}))<\ldots$
$*|R|<|P(R)|<|P(P(R))|<\ldots$
* There cloesnot exist any "biggest infinity".
* $P(\mathbb{N})$ is an an uncountable set $(\because|\mathbb{N}|<|P(\mathbb{N})|)$
* $* \mid$ Finite sett $|<|\mathbb{N}|<|\mathbb{R}|<|P(\mathbb{R})|<|P(P(\mathbb{R}))|<\ldots$ $\vec{N}_{0}<N_{1}<N_{2} \quad$ uncountable infinities
(*) $|P(\mathbb{N})|=|\mathbb{R}|=C \rightarrow$ continuum flypothesis uncountable infinity
CSIR Which of the following set is (are) uncountable
(a) $\{f \mid f: \mathbb{N} \rightarrow\{1,2\}\}$
(b) $\{f \mid f:\{1,2\} \longrightarrow \mathbb{N}\}$
(c) $\{f \mid f:\{1,2\} \longrightarrow \mathbb{N}, f(1) \leq f(2)\}$
(a) $\{f \mid f: \mathbb{N} \rightarrow\{1,2\}, f(1)=f(2)\}$

Sol n:(a) Claim: $|A|=|P(\mathbb{N})| \rightarrow$ uncountable

$$
\begin{aligned}
& \phi: P(\mathbb{N}) \rightarrow A \text { by } \phi(x)=g \\
& x \subseteq A, g: \mathbb{N} \longrightarrow\{1,2\} \\
& X \in P(A) g(\alpha)=\left\{\begin{array}{l}
1 \text { if } \alpha \in x \\
2 \text { if } \alpha \notin x
\end{array}\right.
\end{aligned}
$$

To stow ϕ : one - to -one
To show: $x \neq y \Rightarrow \phi(x) \neq \phi^{\frac{1^{g}}{(y)}}{ }^{\frac{h}{y}}$
Without loss of generality, $x \nsubseteq \pm, X / \$ x x \leq y$
There exists $\alpha \in X$ but $\alpha \notin Y$

$$
g(\alpha)=1, \quad h(\alpha)=2 \Rightarrow \phi(x) \neq \phi(y)
$$

Dhow: ϕ : onto
Pick an $g \in A$

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow\{1,2\} \\
& \phi\left(\left\{n \in \mathbb{N}: g\left(\frac{n}{N}\right)=1\right\}\right)=g
\end{aligned}
$$

$$
\begin{aligned}
& K N_{0}=N_{0}, K: \text { finite } \\
& N_{0}^{k}=\ldots=N_{0}^{4}=N_{0}^{3}=N_{0}^{2}=N_{0} \quad K<\infty \quad \frac{\text { classtime page No. } 50}{\text { Date }} 1
\end{aligned}
$$

If $x=\mathbb{N}$, then $\phi(x)=g$, where $g \equiv 1$
If $x=$, thin $\phi(x)=g$, where $g \equiv 2$ or $2^{N_{0}}=L$ is cardinality of \mathbb{R} whin Claim: If A and B : countable sets, then $A \times B$ is countable

tr $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$: countable sets $\left.\begin{array}{l}\left\{\begin{array}{lll}a_{1}, a_{2}, a_{3}, . .\end{array}\right\}\left\{\begin{array}{ll}11 \\ b_{1}, b_{2}, b_{3}, \ldots\end{array}\right\} \\ \left(a_{1}, b_{1}\right) \\ \left(a_{1}, b_{2}\right) \\ \left(a_{3}, b_{3}\right)\end{array}\right\}$. $A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}$: countable sets, $n<\infty$ (using Mathematical Induction)

* A finite cartesian product of countable sets is countable.

Proof: using induction,
$A_{1}, A_{2}, A_{3}, \ldots, A_{n} \rightarrow$ Infinite many countable sets $A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n} \times$ may not be countable
(b) $B=\{f \mid f:\{, 2\} \rightarrow \mathbb{N}\}$
claim: $|B|=|N \times N|=N, N N=N_{0}^{2}=N N_{0} \rightarrow$ countable

$$
\begin{aligned}
& \phi()^{\prime}=(1) f^{\prime \prime} f^{\prime}(2) \\
& \text { Teston } \& \text { is ont }
\end{aligned}
$$

$$
\begin{aligned}
& \text { on. } \& \text { is of to } \\
& \mathrm{g} \rightarrow(4,5)
\end{aligned}
$$

$$
g(1)=4 \quad g(2)=5
$$

Since it is one-to-one correspondence $\Rightarrow|B|=|\mathbb{N} \times \mathbb{N}|$
So, it is uncountable. (N is infinitely countable \rightarrow it is countable)
(c) $C \subseteq B$

Bis countable

$$
C=\{f \mid f:\{1,2\} \rightarrow \mathbb{N}, f(1) \leqslant f(2)\} \quad 12,3 \text { fl l }
$$

O\% c is a subset of countable set $\} \Rightarrow c$ is countable $\& C$ is infinite
(a) $D \subseteq A, D=\{f \mid f: \mathbb{N} \longrightarrow\{1,2\} ; f(1) \leq f(2)\}$
2^{N} : set of all sequences with terms or 1,1 or $2, \ldots$
A is uncountable

$$
\begin{array}{cl}
f(1)=1, & f(2)=1,2 \\
f(1)=2, & f(2)=2 \\
\{1,2\} & 3, y \ldots \\
\frac{\vdots}{3}, & 2 \\
3 \times 2^{\times 0}=9 \times C=C & (\because k C=C)
\end{array}
$$

So, it is uncountable
$\frac{\text { TIER }}{2013}$ True / False
Let s be the set of all sequences $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where each entry a_{i} is either, or 1 . Then s is countable.
Sol: ϕ : one-to-one
There exist $\phi: S \rightarrow P(\mathbb{N})$

$$
\phi\left(\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}\right)=\left\{n \in \mathbb{N}: a_{m}=1\right\}
$$

So, it is uncountable.
$\frac{D U}{2015}$ Which of the following sets are not countable
(a) \mathbb{Z}
(b) $\{1,2\}^{\text {No }}$, the set of all sequences with terms 1 or 2 .
(c) D Show:

Son: (a) Tone onto-to-one correspondence to 2

$$
\text { one -one } x_{1} \neq x_{2} \Rightarrow \phi\left(x_{1}\right) \neq \phi\left(x_{2}\right)
$$

onto Pick $z \in \sqrt{2} 2$

$$
\frac{z}{\sqrt{2}} \mapsto z
$$

Q. A : Subset of $A \times B$: relation from A to B

人 $A=\{1,2,3\} \quad B=\{a, b\}$
(a) $\{(1, a),(3, a)\} \subseteq A \times B$
(c) $\{(1, c),(2, a)\} \nsubseteq A \times B$
(b) $\{(4, a),(2, b)\} \nsubseteq A \times B$

$$
A=B
$$

(ad) $\begin{aligned} &\{(b, 1),(a, 3)\} \subseteq B \times A \\ &\text { (relation from } B \text { to } A)\end{aligned}$
relation from A to A
Or relation on A
2^{N} : set of all sequences with terms or $, 1 \mathrm{cr}^{2}, \ldots$
A is uncountable

$$
\begin{aligned}
& \begin{array}{ll}
f(1)=1, & f(2)=1,2 \\
f(1)=2, & f(2)=2
\end{array} \\
& \begin{array}{ll}
\{1,2\} & 3,4 \ldots \\
\frac{1}{3} & \frac{1}{2} \\
2
\end{array} \\
& 3 \times 2^{\pi_{0}} \Rightarrow(\because k=C \quad(\because \hat{C}=C)
\end{aligned}
$$

So, it is uncountable
$\frac{T I F R}{2013}$ True /False
Lets be the set of all sequences $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where each entry a_{i} is either a or 1 . Then s is countable.
Son: ϕ : one-to-one
There exist $\phi: S \rightarrow P(\mathbb{N})$

$$
\phi\left(\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}\right)=\left\{n \in \mathbb{N}: a_{m}=1\right\}
$$

So, it is uncountable.
$\frac{D U}{2015}$ Which of the following sets are not countable
(a) \mathbb{Z}
(b) $\{1,2\}^{\text {ne }}$, the set of all sequences with terms 1 or 2 .
(c) 2
(d) $\sqrt{2} 2$

$$
\begin{aligned}
& \phi: \varnothing \rightarrow \sqrt{2 \Phi} \phi(x)=\sqrt{2} x . \\
& \text { one=one } \\
& x_{1} \neq x_{2} \Rightarrow \phi\left(x_{1}\right) \neq \phi\left(x_{2}\right)
\end{aligned}
$$

onto Pick $z \in \sqrt{2} Q$

$$
\frac{z}{\sqrt{2}} \leftrightarrows z
$$

Q. A : Subset of $A \times B$: relation from A to B

人 $A=\{1,2,3\} \quad B=\{a, b\}$
(a) $\{(1, b),(3, a)\} \subset A \times B$
(c) $\{(1, c),(2, a)\} \$ A \times B$
(b) $\{(4, a),(2, b)\} \nsubseteq A \times B$

$$
A=B
$$

ya) $\{(b, 1),(a, 3)\} \subseteq B \times A$
relation from A to A
Or relation on A

- $f: \mathbb{N} \rightarrow \mathbb{R}$

A sequence is a function whose domain is \mathbb{N} $\langle f(1), f(2), f(3), \ldots\rangle$
terms

- Sequences

1. Terms can be repeated
2. Order matters
sets
3. Elements canst be repeated.
4. Order corn t matter

* $\langle f(1), f(2), f(3), \ldots\rangle$ or
$\left\langle f_{1}, f_{2}, f_{3}, \ldots\right\rangle$
f_{n} : image of n

$$
\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right),\left(\frac{n+1}{n}\right)_{n=1}^{\infty}\left(a_{n}\right) \text {, where } r a_{n}=2^{n}
$$

- Convergence of sequence:
$\left(a_{n}\right)$ approaches $a^{\prime} \rightarrow$ Meaning?
n is just act as a time, as soon as ta n increases time increases and wee get nearer to a.
Given: $\varepsilon>0$
$\left|a_{n}-a\right|<\frac{\varepsilon}{4} \forall n \varepsilon \geqslant N \rightarrow$ time when terms of seq. get more nearer to how much get nearer
\rightarrow Definition: A sequence $\left(a_{n}\right)$ is said to converge to a ' if for a given $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\varepsilon \forall n \geqslant N
$$

- $a \in \mathbb{R}, \varepsilon>0$

$$
V_{e}(0)=\{x \in \mathbb{R}:|x-a|<\varepsilon\}
$$

We make ε ice radius 3 mallee 4 smaller such that all terms get inside in to neighlowrhood.

After a_{100} all terms are in ε neighborhood of a '
2 N : instant after which sequence enters $V_{\varepsilon}(a)$, never to leave
(A) $V_{c}(a)$ contains all but finitely many terms of $\left(a_{n}\right)$
(*) If E is made smaller, then N may be higher.

* N depends on the choice of E
(0) At most $N-1$ trims aren't in the ε-neighborhood of ' a '.

Q- Show $\left(a_{n}\right)$, where $a_{n}=\frac{1}{\sqrt{n}}$ converges to argo.
Sen"

$$
\varepsilon=\frac{1}{10}
$$

$$
\begin{aligned}
& \text { GOAL }^{10}\left|a_{n}-0\right|<\frac{1}{10} \\
& \text { i.e. } \frac{1}{\sqrt{n}}<\frac{1}{10}
\end{aligned}
$$

$$
\text { i.e. } n>100 \rightarrow \text { Set } N=101
$$

$1 f \varepsilon=\frac{1}{100}$, then $n>10000 \Rightarrow N=10001$
Dual of challenge \& Repenter
GOAL: $\left|\frac{1}{\sqrt{n}}-0\right|<\varepsilon$ ie. $\frac{1}{\sqrt{n}}<\varepsilon$ ie. $n>\frac{1}{\varepsilon^{2}}$
Take $N=\left[\frac{1}{\varepsilon} \frac{1}{2}\right]+1$

$$
\therefore \operatorname{lan}_{\rightarrow} \rightarrow 0 \text { ie } \lim _{n \rightarrow \infty} a_{n}=0
$$

Q -Show $\left(\frac{n}{n+1}\right) \rightarrow 1$
Sol: Liven: $\varepsilon>0$
GOAL: $\left\lvert\, \frac{n}{n+1}-1<\varepsilon\right.$ ie. $\frac{1}{n+1}<\varepsilon$ i.e. $n+1>\frac{1}{\varepsilon}$ ie. $n>\frac{1}{\varepsilon}-1$
N : any natural number greater than $\frac{1}{\varepsilon}-1$

Let the no. be a $\underset{\rightarrow}{ } x$

Q- Arscuile how would we demonstrate the following statements invalid.
(1) At each college of 'limited states, there is a student who is at least seven fut tall.
(2) For each college of the united states, there is a professor who give wry students grades either A or B.
(3) There exists a college in the united states, where each student is at least six feet tall
sol (1) There as ts a college of the U.S., where each student is is lass than san seven fut tall.
(2) There is a college of the U.S, where each professor give at least one student grades neither A nor B.
(3) At each college in the US, there is a student who is lessthan (at moet) six feet tall.
(*) \sim [For all $\ldots]=$ there exists $a \ldots$
$\frac{\pi F R}{2014}$ Let A, B, C be subsets of \mathbb{R}. What is the negation of the following statement?
For each $\varepsilon>1$, there exists $a \in A, b \in B$ such that for all $c \in C$, we have $|a-\varepsilon|<\varepsilon \quad \&|a-c|>\varepsilon$
(a) There exists an $\varepsilon \leq 1$, such that for all $a \in A, b \in B$, there exists a $c \in C$, such that $|a-b| \geqslant \varepsilon \&|b-c| \leq \varepsilon$
(a) There exists an $B \leq V$, such that for all $a \in A, b \in B$, there exists a $C \in C$, such that $|a-c| \geqslant \varepsilon$ or $|b-c| \leqslant \varepsilon$
(c) There exists an $\varepsilon>1$, such that for all $a \in A, b \in B$, there exists a $c \in C$, such that $|a-c| \geqslant \varepsilon \&|b-c| \leqslant \varepsilon$
(d) There exists an $\varepsilon>1$, such that for all $a \in A, b \in B$ there exists $a c \in C$ such that $|a-c| \geqslant \varepsilon$ or $|b-c| \leqslant \varepsilon$

- $\left(a_{n}\right) \rightarrow a$

For each $\varepsilon>0$, there exists an $N \in \mathbb{N}$ st. $\left|a_{n}-a\right|<\varepsilon \forall n \geqslant N$ $\left(a_{n}\right) \longrightarrow a \longrightarrow$ Negation
What does it mean when if ur say that $\left(a_{n}\right)$ doesnot converge to a ?

$$
\begin{aligned}
& 1-2 \\
& \frac{-2}{1} \\
& \text { miprues } \\
& \text { operation } \quad \text { native } 2
\end{aligned}
$$ of sequence

"There exits an $\varepsilon>0$, such that for all $N \in \mathbb{N}$, there exists an $M \geqslant N$ st. $\left|a_{\mu}-a\right| \geqslant \varepsilon$."

Q- Show that $\left(\frac{1}{8},-\frac{1}{8}, \frac{1}{8}, \frac{-1}{8}, \ldots\right)$ downat converge to zero
Sol: If we take $\varepsilon=\frac{1}{16}$, no Nworks!

Q- Show that $\left(\frac{1}{8}, 0, \frac{-1}{8}, 0, \frac{1}{8}, 0-\frac{1}{8}, \ldots\right)$ doesnot converge to zero
Sol: If we take $\varepsilon=\frac{1}{16}$, find some suitable N. there is no such N

\# Te show: $\left(\frac{1}{8}, \frac{-1}{8}, \frac{1}{8}, \frac{-1}{8}, \ldots\right) \mapsto l$ for any $l \in \mathbb{R}$
If $l \neq \pm \frac{1}{8}$, then

$$
\left.\varepsilon:=\min \left\{\left|l-\left(-\frac{1}{8}\right)\right|,\left|\ell \frac{1}{8}-l\right|\right\} \frac{1}{\ell-\frac{1}{8} l}\right) \frac{x}{8} e^{-}+
$$

$$
\text { If } l=\frac{1}{8}, \frac{-1}{8} \text {, then } \varepsilon=\left\lvert\, \frac{1 \frac{1}{8}-\left(-\frac{1}{8}\right)}{2}=\frac{1}{8}\right.
$$

Q- Argue that the sequence $(1,0,1,0,0,1,0,0,0,1, \ldots)$ doesn't converge to zero (a)For what $\varepsilon>0$, we get a response N ?
(b) For, what $\varepsilon>0$, we don't get any response N ?

Se ln: $^{n}:(0)(0-2, O+2) \rightarrow \varepsilon=2, N=1 \quad$ For $q>0$, we get suitable $N=N_{0}$

(b) $H=1$, then we don't get any N as I go outside from it

- For $\varepsilon>0$, we get suitable $N=N_{0}$
any N> $>N_{0}$ also suitable N
- $E_{0}>0$, suitable N Suppose $\varepsilon^{\prime}>\varepsilon_{0} \quad \frac{\left(1-a^{\prime}+\varepsilon^{\prime} a \quad a+\varepsilon_{0}\right)}{a+\varepsilon^{\prime}}$
Same N would work
* A : bounded set $\Rightarrow 7$ some $M>0$ sit. $|x|<k M \quad \forall x \in A$
(6) To check boundedness, we measure range (vertically) not tovicontalle)

Function is bounded, if range is bounded.
$|x|=\max \{x,-x\} \quad \Rightarrow|a|-1 b|\leqslant| a-y$ assay max ma 57
$||a|-|b|| \leq|a-b| \rightarrow \max$. $\{|a+||b|,|b|-|a|\}||b|-|a| \leq|a| s \mid$

* Is $f(x)=0$ a bounded function? yes

No, range is not bounded in this case so, function is not bounded.
$*\langle 1,0,-1,0,1, \ldots\rangle \rightarrow$ Range $=\{1,0,-1\}$

- Definition: A sequence $\left(a_{n}\right)$ is said to be bounded if thee louts an $M>0$ such that $\left|a_{n}\right|<M \forall n \in \mathbb{N}$

$$
-M<a_{n}^{b}<M \forall n \in \mathbb{N}
$$

* Result: A convergent sequence is bounded.

Prof $\cot ^{\left(\cot ^{a} \varepsilon\right.}=1$, we get $a_{n} N \in \mathbb{N}$ st. $\left|a_{n}-a\right|<1 \quad \forall H \in \mathbb{N}-0$

$$
\begin{aligned}
& \quad\left|a_{n}\right|-|a| \leq\left|a_{n}-a\right|-(2) \\
& \Rightarrow\left|a_{n}\right|<|a|+\mid \forall n c \geqslant N \\
& \text { (1) } \mid M r=\max \cdot\left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|, \ldots,\left|a_{1}-1,|a|+1\right\}\right. \\
& \Rightarrow\left|a_{n}\right| \leq M
\end{aligned}
$$

14816

- $\left(a_{n}\right) \rightarrow a$

Q- Show $\operatorname{Lt}_{n \rightarrow \infty} \frac{3 n+1}{2 n+2}=\frac{3}{2}$
Sd.: $\quad a_{n}=\frac{3 n+1}{2 n+2}$
leven $\varepsilon>0$
GOAL: $\left|a_{n}-\frac{3}{2}\right|<\varepsilon$
Seek some suitalue N

$$
\begin{aligned}
& \left|\frac{3 n+1}{2 n+2}-\frac{3}{2}\right|<\varepsilon \\
& \text { i.e. }\left|\frac{-1}{n+1} \frac{-3}{2}\right|<\varepsilon \\
& \text { ie. } n+1>\frac{1}{\varepsilon} \quad \text { i.e. } n>\frac{1}{\varepsilon}-1
\end{aligned}
$$

Choose any natural number greater than $\frac{1}{\varepsilon}-1$.
$Q-\langle c, c, c, c, \ldots\rangle \rightarrow c$. Show it.
sol: gwen: $\varepsilon>0$

$$
a_{n}=c \forall n \in \mathbb{N}
$$

GOAL: $\left|a_{n}-c\right|<\varepsilon$

$$
\begin{aligned}
& \text { i.e. }|c-c|<\varepsilon \\
& \text { lie } 0<\varepsilon
\end{aligned}
$$

Choose $N=1$.

* Eventually constant sequences: $\langle c, \ldots, c, c, c, \ldots\rangle$ crisis can be anything
(*) We can ignore beginning finely many terms of a sequence ats in regard to it convergence.
* "Finite word is never used, we can use "finitely many" or "a finite number of".
Q- Is $\langle n\rangle$ convergent? No
Sol': $\langle n>$ is not bounded, and consequently it is not convergent.
Result:
* $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle$: sequences

$$
\lim a_{n}=a, \lim b_{n}=b, c \in \mathbb{R}
$$

Then
(1) $\lim c a_{n}=c a$
(2) $\lim \left(a_{n}+b_{n}\right)=a+b$
(3) $\lim \left(a_{n} b_{n}\right)=a b$
(4) $\lim \frac{a_{n}}{b_{n}}=\frac{a}{b}$, if $b \neq 0$

This is knoten as Algebraic limit of ${ }^{b_{n}}$ Thioram.

Pref given: $\varepsilon>0$
GOAD: $\left\{^{+0} \mathrm{Ca}_{n}-c a \mid<\varepsilon\right.$
L. $|c| l a_{n}-a \mid<\varepsilon$ te

If we make $\left|a_{n}-a\right|<\frac{\varepsilon}{|c|}$, owe work is done.
Since $\left(a_{n}\right) \rightarrow a$, there exults an $N \in \mathbb{N} s$ st.

$$
\left|a_{n}-a\right|<\frac{\varepsilon}{|c|} \forall n \geqslant N
$$

$$
\Rightarrow|c|\left|a_{n}-a\right|<\varepsilon \forall n \geqslant N
$$

so, our goal is accomplished.
cone I $c=0$
It is obvious.
(2) given: $\varepsilon>0$

$$
\begin{align*}
& \text { Goal: } \left.\mid\left(a_{n}+b_{n}\right)-a+b\right) \mid<\varepsilon \\
& \text { (abe }\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\varepsilon \tag{A}\\
& \left(a_{n}\right) \rightarrow a \Rightarrow 7 \text { same } N_{1} \in \mathbb{N} \text { st. } 1 a_{n}-a \mid<\varepsilon \quad \forall n \geqslant N_{1} \\
& \left(b_{n}\right) \rightarrow b \Rightarrow 7 \text { some } N_{2} \in \mathbb{N} \text { s.. }\left|b_{n}-b\right|<\frac{\varepsilon}{2} \forall n \geqslant N_{2} \\
& \text { Set } N=\max .\left\{N_{1}, N_{2}\right\} \\
& \left.\left|a_{n}-a\right|<\frac{\varepsilon}{2}\right\} \forall n \geqslant N \mid \\
& \left|b_{n}-b\right|<\varepsilon \\
& \therefore\left|a_{n}-a\right|+\left|b_{n}-b\right|<\varepsilon+\varepsilon \quad \forall n \geqslant N \\
& \text { ie. }\left|a_{n}-a\right|+|b| n-b \mid<\varepsilon \forall n \geqslant N \\
& \text { From } \theta,\left|a_{n}+b_{n}-(a+b)\right|<\varepsilon \forall n \geqslant N .
\end{align*}
$$

(3) Elvin $\varepsilon>0$

GOAL $\left|a_{n} b_{n}-a b\right|<\varepsilon$

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n} b_{n}-a b_{n}+a b_{n}-a b\right| \\
& \leq\left|a_{n} b_{n}-a b_{n}\right|+\left|a b_{n}-a b\right| \\
& \leq\left|b_{n}\right|\left|a_{n}-a\right|+|a|\left|b_{n}-b\right|
\end{aligned}
$$

$$
\frac{|a|}{|a|+1}<1
$$

If $a=0$, then $0<1$

$\left(b_{n}\right) \rightarrow b \Rightarrow$ There exists $a n N_{1} \in \cap\left|\Delta t .\left|b_{n}-b\right|<\frac{2}{2(a \mid+1)}+n \geqslant N_{1}\right.$

$$
\left(a_{n}\right) \rightarrow a \Rightarrow \text { There suss an } N_{2} \in \mathbb{N} t .\left|a_{n}-a\right|<\frac{\varepsilon}{2 M} \forall n \geqslant N_{2}
$$

$$
N:=\max \left\{N_{1}, N_{2}\right\}
$$

$$
\left.\begin{array}{l}
\left|b_{n}-b\right|<\frac{\varepsilon}{2|a|+1)} \\
\left|a_{n}-a\right|<\frac{\varepsilon}{2 H}
\end{array}\right\} \forall n \geqslant N
$$

(c)

$$
\begin{aligned}
& \left.M\left|a_{n}-a\right|^{2 H}+|a|\left|b_{n}-b\right|<\mu \cdot \frac{\varepsilon}{2 H}+|a| \cdot \frac{\varepsilon}{<\frac{\varepsilon}{2}+\frac{\varepsilon^{2}}{2}} \forall n \geqslant N^{2|a|}+1\right) \\
& \text { ie. } \mid a_{n} b n \geqslant N
\end{aligned}
$$

(4) gwen: $\varepsilon>0$

It is sufficient to show that $\lim \frac{1}{b_{n}}=\frac{1}{b}$
GOAL: $\left|\frac{1}{b_{n}}-\frac{1}{b}\right|<\varepsilon$
4) wivese $\left|b_{n}\right|<M$ then $\frac{1}{b_{n} \mid}>\frac{1}{M}$ which toe is not appreprinte. so, we can't do this
$\left(b_{n}\right) \rightarrow b$. There exists an $N_{1} \in \mathbb{N} s$.t. $\left|b_{n}-b\right|<\varepsilon \forall n \geqslant N_{1}$ $\left|\left|b_{n}\right|-b\right|\left|\leq\left|b_{n}-b\right|\right|=$
$\Rightarrow \quad\left|\left|b_{n}\right|-|b|\right|<\varepsilon \quad \forall n \geqslant N_{1}$
$\Rightarrow\left|b_{n}\right|-\left|b_{2}\right|<\varepsilon^{, k / 12} \mid b_{n}\langle\varepsilon+1| \rightarrow$ Not required (Taken $|=\varepsilon+|b|\}$ in (3)) $|b|-\left|b_{n}\right| \geqslant \frac{b_{5}^{2}}{2} \Rightarrow\left|b_{n}\right|>|b|-\varepsilon_{\frac{i b 1}{2}} \Rightarrow\left|b_{n}\right|>\frac{|b|}{2} \quad \forall n \geqslant N_{1}$
(1) $\Rightarrow\left|\frac{\left.\right|^{\prime}}{b_{n}}-\frac{1}{b}\right|<\frac{\left|b_{n}-b\right|}{\left|b_{n}\right||b|}<\frac{\left|b_{n}-b\right|}{\frac{|b|}{2}|b|} \quad$ if $n \geqslant N_{1}$ $\left(b_{n}\right) \rightarrow b \Rightarrow 7$ some $N_{2} \in \mathbb{N}$ s.t. $\left|b_{n}-b\right|<\frac{\varepsilon}{2}|b|^{2} \forall n \geqslant N_{2}$ Take $N=\max \cdot\left\{N_{1}, N_{2}\right\}$

$$
\frac{\left|b_{n}-b\right|}{\frac{|b||b|}{2}}<8 \forall n \geqslant N
$$

- $\left(a_{n}\right),\left(b_{n}\right)$: sequences in \mathbb{R}

$$
\left(a_{n}\right) \rightarrow a,\left(b_{n}\right) \rightarrow b, c \in \mathbb{R}
$$

Then. © if $a_{n} \geqslant 0 \forall n \in \mathbb{N}$, then $a \geqslant 0$
(2) if $a_{n} \geqslant b_{n} \forall n \in \mathbb{N}$, then $a \geqslant b$
(3) If $a_{n} \geqslant c \forall n \in \mathbb{N}$, then $a \geqslant c$.
bund: 10 Let if possible, $a<0$

$$
-\left(\frac{1, n_{n}}{a_{n}}\right)!
$$

Take $\varepsilon=-\frac{a}{2}$ or $\frac{|a|}{2}\left(-\frac{a}{2}>0\right.$ as $a<0$, so $\left.\varepsilon>0\right)$ $\left(a_{n}\right) \rightarrow a \Rightarrow$ There exists an $N \in \mathbb{N}$ st. an $V_{\varepsilon}(a) \forall n \geqslant N$ so, we get a contradiction It contains -ve\#s. Hence, $a \geqslant 0$
(2)

$$
\begin{aligned}
& \text { (2) } a_{n} \geqslant b_{n} \Rightarrow a_{n}-b_{n} \geqslant 0 \\
& \operatorname{Let} c_{n}=a_{n}-b_{n} . \\
& \lim c_{n}=\lim \left(a_{n}-b_{n}\right)=\operatorname{\operatorname {Lim}(a_{n}+(-1b_{n})}=\lim a_{n}+\lim (-1) b_{n} . \\
&=a-b . \\
& c_{n} \geqslant 0 \Rightarrow \lim c_{n} \geqslant 0 \Rightarrow a-b \geqslant 0 \Rightarrow a \geqslant b
\end{aligned}
$$

20816 Exercise -2:2
2.2.1)(a) $\lim \frac{1}{\left(6 n^{2}+1\right)}=0$

Given: $\varepsilon>0$, It is sufficient to
$a_{n}=1$ assume $0<\varepsilon<1$
(Demand: $\left|a_{n}-l\right|<\varepsilon_{2}$ $\left|a_{n}-l\right|<\varepsilon_{1}$
For $\varepsilon=\varepsilon_{1}$, we get desired N
GOAL $\left|a_{n}-0\right|<\varepsilon \quad$ i.e. $\frac{1}{6 n^{2}+1}<\varepsilon$ For $\varepsilon=\varepsilon_{2}, \varepsilon_{2}>\varepsilon_{1}$, same N works.
i.e. $6 n^{2}+1>\frac{1}{\varepsilon}$
i.e. $n>\sqrt{\frac{1 / \varepsilon-1}{6}}$ (For $\varepsilon>1$, root becomes non-real, so (*) same N works for $\varepsilon>1$)

So, we let $0<\varepsilon<1$
2.2.6)(a) larger
(b) larger
 There exists an $\varepsilon>0$ such that for all $N \in \mathbb{N}$, we have $\left|a_{n}-1\right|<\varepsilon \forall n \geqslant N_{1} \mid \rightarrow$ vercongent sequences.
(always) Ste convergent sequences vercongent? 'T Const. seq.
(*) Vercongent sequences must be bounded $\left(:\left|a_{n}-l\right|<\varepsilon \forall n \geqslant 1\right.$ i. $e-l l-\varepsilon<a_{n}<l+\varepsilon$) [Prove it!]
vercongent but divergent sequence. $\rightarrow\langle 1,-1,1,-1, \ldots$

$$
\varepsilon=3, \quad l=1, \quad\left|a_{n}-1\right|<\varepsilon
$$

$\therefore a_{n}=\left[\left[\frac{1}{n}\right]\right]$ converges to zero, Always convergent
So, $N=2$ works for all $\varepsilon>0$
GOAL: $\left|a_{n}-0\right|<\varepsilon$ i.e. $0<\varepsilon$
This goal is trivially true.

* $\left.a_{n}=\left[\left[\frac{1}{[2 n)^{3}}\right]\right] \rightarrow\langle 0,0,0, \ldots\rangle\right\rangle$ works for all $\varepsilon>0$
(b) $a_{n}=\left[\left[\frac{10+n}{2 n}\right]\right]=\langle 5,3,2,1,1,1,1,1,1,1,0,0,0, \ldots\rangle$
$N=11$ works for all $\varepsilon>0$.
* Bounded but not vercongent? Not possible as ur e get \&

* Vercongent \& convergent sequence $\rightarrow\langle c, c, c, \ldots\rangle$
2.2.1) (a) $\lim a_{n}=\infty$

How to define it?

Orally Sequence $<\lim \left\langle(-1)^{n} n\right\rangle \neq \infty$
(goes above but also comes below so, division invt find).

can le carkgorize in $\lim \lim _{n}=\infty$

cant decide the dreection or any N_{1}, the graphdocem: go beyond N_{1} allays, so an^{2} be categorize in lima $a_{n}=\infty$

- Definition: We write lam $a_{n}=\infty$, if for any $\triangle \in R>子$ an $N \in N s t$

$$
a_{n}>\Delta \forall n \geqslant N
$$

$\left(a_{n}\right)$ diverges to ∞ or converges! to ∞
e.g: $\left.\langle 1,2,3, \ldots\rangle,<2^{n}\right\rangle$
(blithe क w which hera)

- We write bim $a_{n}=-\infty$, if for any $\triangle \in\left\{\left(7\right.\right.$ an $N \in \mathbb{N}$ st. $a_{n}<\Delta$ then $\left(a_{n}\right)^{\prime}$ dirges to $-\infty$
- Divergent not implies diverges to ar .l.g. $\langle 1,-1,1,-1, \ldots\rangle$ is divergent but not diverges to po v
- A sequence which is not copwergent to any finite point is divergent sequence
IP.
2.3.7)(0) $\lim \sqrt{n}=\infty$
$\Delta>0$ be guien,
GOAL: $\sqrt{n}>\Delta$ i.e. $n>\Delta^{2}$
Choose. N any natural no. greater than Δ^{2}.
(b) It doesnt dirge to no
- $\left(a_{n}\right)$: sequence, $A \subseteq \mathbb{R}$

There exists an $N \in \mathbb{N}$ st: $a_{n} \in A \forall n \geqslant N$
" $\left(a_{n}\right)$ eventually enters in A "

- Any $N \in \mathbb{N}$, there exists an $M \in \mathbb{N}, M \geqslant N$ such that $a_{M} \in A$. "(an) frequently enters in A ".

$$
\frac{\frac{\left|x_{n}-x\right|}{\sqrt{x_{n}+\sqrt{x}}}}{+i f}<1<\frac{\left|x_{n}-x\right|}{\mid \gg 1}
$$

2.2.8) (a) Frequently

* $P \Rightarrow Q$ but $Q \Rightarrow P$ or $Q \nRightarrow P$
skenqu Wrakur
(b) Eventually \Rightarrow Frequently
(c) $a_{n} \in(l-\varepsilon,+l+\varepsilon) \rightarrow A \underset{l-\varepsilon}{l} \quad \frac{1}{l+\varepsilon}$
\therefore Eventually in $V_{e}(l)$.
(d) $a_{n} \in(1.9,21)$ for infinitely many values of n.

Consider ($2,-2,2,-2, \ldots$)
$\therefore\left(a_{n}\right)$ is n't eventually but frequently in $(1.9,2.1)$ lyween: $N \in \mathbb{N}$
Let if possible, $a_{n} \notin(1.9,2.1)$ if $n \geqslant N$.
$a_{n} \in(1.9,2.1)$ for at most $N-1$ values of $n \ldots$ which is a contradiction to gwen hypothesis.

Exercise 2.3

Courtesy: Stephen Abbott

Exercise 2.3.1. Show that the constant sequence (a, a, a, a, \ldots) converges to a.

Exercise 2.3.2. Let $x_{n} \geq 0$ for all $n \in \mathbf{N}$.
(a) If $\left(x_{n}\right) \rightarrow 0$, show that $\left(\sqrt{x_{n}}\right) \rightarrow 0$.
(b) If $\left(x_{n}\right) \rightarrow x$, show that $\left(\sqrt{x_{n}}\right) \rightarrow \sqrt{x}$.

Exercise 2.3.3 (Squeeze Theorem). Show that if $x_{n} \leq y_{n} \leq z_{n}$ for all $n \in$ \mathbf{N}, and if $\lim x_{n}=\lim z_{n}=l$, then $\lim y_{n}=l$ as well.

Exercise 2.3.4. Show that limits, if they exist, must be unique. In other words, assume $\lim a_{n}=l_{1}$ and $\lim a_{n}=l_{2}$, and prove that $l_{1}=l_{2}$.

Exercise 2.3.5. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be given, and define $\left(z_{n}\right)$ to be the "shuffled" sequence ($\left.x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots, x_{n}, y_{n}, \ldots\right)$. Prove that $\left(z_{n}\right)$ is convergent if and only if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are both convergent with $\lim x_{n}=\lim y_{n}$.

Exercise 2.3.6. (a) Show that if $\left(b_{n}\right) \rightarrow b$, then the sequence of absolute values $\left|b_{n}\right|$ converges to $|b|$.
(b) Is the converse of part (a) true? If we know that $\left|b_{n}\right| \rightarrow|b|$, can we deduce that $\left(b_{n}\right) \rightarrow b$?

Exercise 2.3.7. (a) Let (a_{n}) be a bounded (not necessarily convergent) sequence, and assume $\lim b_{n}=0$. Show that $\lim \left(a_{n} b_{n}\right)=0$. Why are we not allowed to use the Algebraic Limit Theorem to prove this?
(b) Can we conclude anything about the convergence of $\left(a_{n} b_{n}\right)$ if we assume that $\left(b_{n}\right)$ converges to some nonzero limit b ?
(c) Use (a) to prove Theorem 2.3.3, part (iii), for the case when $a=0$.

Exercise 2.3.8. Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):
(a) sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, which both diverge, but whose sum $\left(x_{n}+y_{n}\right)$ converges;
(b) sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, where $\left(x_{n}\right)$ converges, $\left(y_{n}\right)$ diverges, and $\left(x_{n}+\right.$ y_{n}) converges;
(c) a convergent sequence (b_{n}) with $b_{n} \neq 0$ for all n such that ($1 / b_{n}$) diverges;
(d) an unbounded sequence $\left(a_{n}\right)$ and a convergent sequence $\left(b_{n}\right)$ with $\left(a_{n}-\right.$ b_{n}) bounded;
(e) two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$, where $\left(a_{n} b_{n}\right)$ and $\left(a_{n}\right)$ converge but $\left(b_{n}\right)$ does not.

Exercise 2.3.9. Does Theorem 2.3.4 remain true if all of the inequalities are assumed to be strict? If we assume, for instance, that a convergent sequence $\left(x_{n}\right)$ satisfies $x_{n}>0$ for all $n \in \mathbf{N}$, what may we conclude about the limit?

Exercise 2.3.10. If $\left(a_{n}\right) \rightarrow 0$ and $\left|b_{n}-b\right| \leq a_{n}$, then show that $\left(b_{n}\right) \rightarrow b$.
txercises - 2.3
2.3.2) (a) $\varepsilon>0$ be gwén

GOAL: $\left|\sqrt{x_{n}}-0\right|<\varepsilon$..e. $x_{n}<\varepsilon^{2}$ i.e. $\left|x_{n}-0\right|<\varepsilon^{2}$
$\left(x_{n}\right) \rightarrow 0, \therefore \exists a_{n} N \in \mathbb{N} \rightarrow\left|x_{n}-0\right|<\varepsilon^{2} \forall n \geqslant N$
(b) fiven: $\left(x_{n}\right) \rightarrow x$
$\varepsilon>0$ be given
GOAL: $\left|\sqrt{x_{n}}-\sqrt{x}\right|<\varepsilon$

$$
\text { i.e. } \frac{\left|x_{n}-x\right|}{\sqrt{x_{n}+\sqrt{x}}}<\varepsilon
$$

Also,

$$
\frac{\left|x_{n}-x\right|}{\sqrt{x_{n}}+\sqrt{x}} \leqslant \frac{\left|x_{n}-x\right|}{\sqrt{x}} \text {, if } x \neq 0 \quad(x=0 \text {, wr have done in (a) })
$$

Sunce $\left(x_{n}\right) \rightarrow x, 7$ an $N \in \mathbb{N}$ s.t. $\left|x_{n}-x\right|<\varepsilon \sqrt{x} \forall n \geqslant N$
2.3.5) $\left(x_{n}\right),\left(y_{n}\right)$

$$
\left(z_{n}\right)=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots\right)
$$

T.P: $\left(z_{n}\right)$ is $g t \Leftrightarrow\left(x_{n}\right) \Delta\left(y_{n}\right)$ are both gt wisth $\lim x_{n}=\lim y_{n}$
\Leftrightarrow Let $\left(z_{n}\right)$ br convergent,: 7 some $N \in \mathbb{N}$ set. $\left|z_{n}-l\right|<\varepsilon \forall n \geqslant N$-(1)

$$
\left(Z_{n}\right) \longrightarrow l
$$

Claim: $\lim x_{n}=l$
Given: $\varepsilon>0$
GOAL: $\left|x_{n}-l\right|<\varepsilon$

$$
x_{1}=z_{1}, x_{2}=z_{3}, x_{3}=z_{5}, \ldots, x_{n+1}=z_{n}, n \text { is odd }
$$

Suppose $M, M+2, M+4, \ldots \rightarrow$ odd nos $\geqslant N$.-(2)

$$
\left.\begin{array}{r}
\text { (1) \&(2) } \Rightarrow \\
\left|z_{M-l}\right|<\varepsilon \Rightarrow\left|x_{H+1}-l\right|<\varepsilon \\
\left|z_{M+2}-l\right|<\varepsilon \Rightarrow\left|x_{M+3}^{2}-l\right|<\varepsilon \\
\\
\quad\left|z_{H+4}-l\right|<\varepsilon \Rightarrow\left|x_{\frac{H+5}{2}}^{2}-l\right|<\varepsilon
\end{array}\right\} \Rightarrow\left|x_{n}-l\right|<\varepsilon \forall n \geqslant \frac{H+1}{2}
$$

$\therefore\left(x_{n}\right)$ converges to l.
Similarly, $\left(y_{n}\right)$ converges to l.
(\Leftarrow) If even entries and odd entries converges to l, then whole sequence converges to l.
2.36)(a) (bu) \rightarrow b
T. S: $\left|b_{n}\right| \rightarrow|b|$
$\varepsilon>0$ be given.
GOAL: $\left|\left|b_{n}\right|-|b|\right|<\varepsilon$
$\left|\left|b_{n}\right|-|b|\right| \leqslant\left|b_{n}-b\right| \leqslant \mid \varepsilon$
2.3.3) Squeeze Theorem: $\left(x_{n}\right),\left(y_{n}\right),\left(z_{n}\right)$ sequences

Sandwich Theorem $\quad x_{n} \leq y_{n} \leq z_{n} \forall n \in \mathbb{N}$
T.S. $\left(y_{n}\right) \rightarrow l$

Prof: $\varepsilon>0$ be given
There exists an N_{1} s.t. $\left|x_{n}-l\right|<\varepsilon \forall n \geqslant N_{1}$
\& There exits an N_{2} sit. $\left|z_{n}-l\right|<\varepsilon \forall n \geqslant N_{2}$
$N=\max \left\{N_{1}, N_{2}\right\}$

$$
\left.\begin{array}{l}
\left|x_{n}-l\right|<\varepsilon \\
\left|z_{n}-l\right|<\varepsilon
\end{array}\right] \forall n \geqslant N \text { i.e. } \frac{l-\varepsilon<x_{n}<\ell+\varepsilon}{l-\varepsilon<z_{n}<l+\varepsilon} \forall n \geqslant N
$$

$$
|\sin \theta| \leq|\theta| \forall \theta \in \mathbb{R}
$$

$$
\begin{aligned}
& l-\varepsilon<x_{n} \leq y_{n} \leq z_{n}<l+\varepsilon \quad \forall n \geqslant N \\
& \text { i.e. } \ell-\varepsilon<y_{n}<l+\varepsilon \quad \forall n \geqslant N \\
& \text { ie. } \mid y_{n}-\mu<\varepsilon \quad \forall n \geqslant N .
\end{aligned}
$$

Q. $\operatorname{show} t \sin \frac{1}{n}=0$

SQ". In particular,

$$
\begin{aligned}
& \operatorname{let} \theta=\frac{1}{n} \\
& \frac{-1}{0=n} \leq \sin \frac{1}{n} \leq \frac{1}{n} \rightarrow n \in \mathbb{N}
\end{aligned}
$$

$$
\begin{aligned}
& |\sin \theta| \leq|\theta| \quad \forall \theta \in \mathbb{R} \\
\Rightarrow & -\theta \leq \sin \theta \leq \theta \quad \forall \theta \in \mathbb{R}
\end{aligned}
$$

By square Principle, $\lim ^{0} \sin \frac{1}{n}=0$
Q- Evaluate:

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}\right]
$$

son: $\frac{1}{\sqrt{n^{2}+n}}+\frac{1}{\sqrt{n^{2}+n}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}<\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}<\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+1}}+\cdots+\frac{1}{\sqrt{n^{2}+1}}$

$$
\begin{aligned}
& \frac{n}{\sqrt{n^{2}+n}}<a_{n}<\frac{n}{\sqrt{n^{2}+1}} \quad \forall n \in \mathbb{N} \\
& \lim \frac{n}{\sqrt{n^{2}+n}}=\lim \frac{1}{\sqrt{1+1 / n}}=\frac{1}{\sqrt{1+\operatorname{dim} \frac{1}{n}}}=\frac{1}{\sqrt{1+0}}=1 \\
& \lim \frac{n}{\sqrt{n^{2}+1}}=\lim \frac{1}{\sqrt{1+1 / n^{2}}}=\operatorname{lisex} \frac{1}{\sqrt{1+0}}=1
\end{aligned}
$$

* Result: ficontinuousata.

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

(2) Limit function commutes with continuous functions.

- Limit as a sum: $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{x=\phi(n)}^{\frac{\varphi(n)}{} f\left(\frac{x}{n}\right)=\int_{\lim _{n \rightarrow \infty}}^{\lim _{n \rightarrow \infty} \frac{y(n)}{n}} f(x) d x \text { 立n}} \frac{1}{n}$

QQ $\lim _{n \rightarrow \infty}\left\{\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right\}$ (2) $\lim _{n \rightarrow \infty}\left\{\frac{n}{n^{2}+1^{2}+n} n^{2}+2^{2}+\ldots+n\right]$
(3) $\lim _{n \rightarrow \infty} \frac{(n!)^{1 / n}}{n}$
(4) $\lim _{n \rightarrow \infty}\left\{\frac{1}{n^{2}} \sec ^{2} \frac{1}{n^{2}}+\frac{2}{n^{2}} \sec ^{2} \frac{4}{n^{2}}+\ldots+\frac{1}{n} \sec ^{2} 1\right.$

SQ ${ }^{n}$ (1) $\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{n}{n+1}+\frac{n}{n+2}+\ldots+\frac{n}{n+n}\right\}=\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{1}{1+\frac{1}{n}}+\frac{1}{1+2 / n}+\ldots+\frac{1}{1+\frac{n}{n}}\right\}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{x=1}^{n} \frac{1}{\left.1+\frac{x}{n}\right)}, \quad \phi\left(\frac{x}{n}\right) . \\
& =\lim _{\lim _{n \rightarrow \infty} \frac{n}{n}} \frac{n}{n} \frac{1}{1+x} d x=1, \psi(n)=n
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{n^{2}}{n^{2}+1^{2}}+\frac{n^{2}}{n^{2}+2^{2}}+\ldots+\frac{n^{2}}{n^{2}+n^{2}}\right\} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{1}{1+\frac{1^{2}}{n^{2}}}+\frac{1}{1+\frac{2^{2}}{n^{2}}}+\cdots+\frac{1}{1+\frac{n^{2}}{n^{2}}}\right\} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\mu=1^{2}}^{n^{4}} \frac{1}{1+\left(\frac{x}{n}\right)^{2}}=\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left[\left.\tan ^{-1}(x)\right|_{0} ^{1}=\frac{\pi}{4}-0=\frac{\pi}{4}\right.
\end{aligned}
$$

$$
\text { (4) } \begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{1}{n} \sec ^{2}\left(\frac{1}{n}\right)^{2}+\frac{2}{n} \sec ^{2}\left(\frac{2}{n}\right)^{2}+\ldots+\left(\frac{n}{n}\right) \sec ^{2}\left(\frac{n}{n}\right)^{2}\right\} \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{n} \sec ^{2}\left(\frac{r}{n}\right)^{2}=\int_{0}^{1} x \sec ^{2}\left(x^{2}\right) d x=\int_{0}^{1} \frac{1}{2} \sec ^{2}(t) d t \\
= & \frac{1}{2}|\tan (t)|_{0}^{1}=\frac{1}{2}[\tan (1)-\tan (0)]=\frac{\tan (1)}{2}=0.7787
\end{aligned}
$$

$$
\text { Sup }\left(a_{n}\right) \in R \text { ange }\left(a_{n}\right) \rightarrow \text { eventually const. seq. }
$$

$$
\begin{aligned}
& \text { Sup }\left(a_{n}\right) \notin \operatorname{Range}\left(a_{n}\right) \rightarrow \text { Not an eventually } \\
& \text { const. seq. }
\end{aligned}
$$

* $\mathrm{Cgt} \Rightarrow$ bod but bod $\Rightarrow \mathrm{gt}$

$$
\text { e.g. }(1,-1,1,-1, \ldots)
$$

- Monotone increasing: if $m_{1}>m_{2}$, then $a_{m_{1}} \geqslant a_{m_{2}}$ egg: $\langle 1,1,1, \ldots\rangle$

Eventually constant see. sup is in range of sid
not eventually cons. sup is not in range.
This is called Intuition
the get gt. seq. in both the cases.
Monotone Convergence theorem :

* Result: A b monotone bounded sequence converges.

Proof: Without loss of generality, we can take
$\left(a_{n}\right)$: monotone increasing x /bounded sequence
By $A O C$, the supremum of $\left\{a_{n}\right.$ ne $\left.\mathfrak{N}\right\}$ exists

$$
\text { Let } s=\sup \left\{a_{n} ; n \in \mathbb{N}\right\}
$$

alai: seq. converges to $s\left[\left(a_{n}\right) \rightarrow s\right]$
Let $\varepsilon>0$ be given.
Wish: $\left.\mid a_{n}-s\right)<\varepsilon$ (.e. $a_{n} \in(s-\varepsilon, s+\varepsilon)$
$s-\varepsilon$ can't be an U. 8 , so 7 some $N \in \mathbb{N}$ s. .

$$
b-\varepsilon<a m
$$

$$
\begin{gathered}
M \cdot I<8-\varepsilon<a_{n}<s \quad \forall n \geqslant N \\
\quad \Rightarrow\left|a_{n}-s\right|<\varepsilon \quad \forall n \geqslant N
\end{gathered}
$$

$$
s-\varepsilon<Q_{N} N
$$

- series:

Actulles
Styx (Magical tier)
Achillestuel (Weak pt. of a person)

Telecopists sum \rightarrow Only first I last term geteremain Classtime Page No. 69

If $s_{n} \rightarrow B$, then wo r write $\Sigma a_{n} \rightarrow B \rightarrow$ Sum
" Σa_{n} converges"

- Geometric series: $a+a r+a r^{2}+a r^{3}+\ldots$

$$
\begin{aligned}
& S=a+a r+a r^{2}+\cdots+a r^{n-1} \\
& S r=a r+a x^{2}+a r^{3}+\cdots+a r^{n} \\
& S(1-r)=\underline{a-a r^{n} \Rightarrow S=\frac{a\left(1-r^{n}\right)}{1-r} \quad \lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}}=\frac{a}{1-r}, \text { if }|r|<1 \\
& \therefore \sum a r^{n}=\frac{a}{1-r}, \text { if }|r|<1
\end{aligned}
$$

eg: $e^{\text {Reno puzzle: }}$

Q: $\sum \frac{1}{n^{2}} \rightarrow$ Check its convergence.

$$
\text { le. } s_{m}<\frac{1}{1}+\frac{2-1}{2 \cdot 1}+\frac{3-2}{3 \cdot 2}+\ldots+\frac{m-(m-1)}{m(m-1)}
$$

$$
\begin{aligned}
& \text { le. } \left.s_{m}<1+\left(1-\frac{1}{k}\right)+\left(\frac{f}{2}-\frac{1}{f}\right)+1 \cdots+\left(\frac{1}{n-1}\right)-\frac{1}{m}\right) \rightarrow \text { Telescopic } \\
& \text { i.e. } s_{m}<2-1<2
\end{aligned}
$$

$$
\text { ie. } s_{m}<2-\frac{1}{m}<2
$$

$s_{m}<2 \forall m \in \mathbb{N}^{m} \Rightarrow\left(s_{m}\right)$ is bounded above By MCT, $\left(\delta_{m}\right)$ Converges
$\therefore \sum_{\frac{1}{n^{2}}}$ converges.

$$
\begin{aligned}
& \text { sequence }\left(s_{1}=\frac{1}{1_{1}^{2}}\right. \\
& \text { of partial o } s_{2}=\frac{1}{1^{2}}+\frac{1}{2^{2}} \\
& \begin{array}{l}
\text { of portion } \\
\text { sums } \\
\text { monotone }
\end{array} \begin{array}{l}
s_{2}=\frac{1}{s_{3}}=\frac{1}{1^{2}}+\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+. .
\end{array} \\
& A_{m}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{m^{2}} \leqslant \frac{1}{1}+\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2}+\ldots+\frac{1}{m(m-1)}
\end{aligned}
$$

$$
2 \frac{1}{n 0}-\frac{\pi^{2}}{6}
$$

$$
x \leq \frac{1}{h} \rightarrow \text { Hownonic serie }
$$

$$
A_{m}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}
$$

$$
b_{2^{2}}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots+\left(\frac{1}{2^{k+1}}+\cdots+\frac{1}{3^{k}}\right)>1+\frac{1}{2} k\right.
$$

No of touns in last group: $2^{k}-\left(2^{k-1}+1\right)+1=2^{k}-2^{k-1}=2^{k-x}(2-1)=2^{k-1}$ $s_{m a}$ is not boundrd above, so, it is nat boundeal. and hience, it is not cowergena.
$\therefore \frac{5}{7}$ is duergunt

* Rermondin $-1:: \frac{1}{2}: 3 \frac{1}{3} \div \frac{1}{4}:: \frac{1}{5}::$
* $\left(a_{n}\right)=$ sequirnce

$$
\begin{aligned}
& \left(a_{1}, a_{2}, a_{3}, \ldots\right) \\
& n_{1}<n_{2}<n_{3}<n_{4}<
\end{aligned}
$$

$$
\left(a_{n_{k}}\right)_{n=1}^{\infty}+\left(a_{n_{n}}, a_{n_{2}}, a_{n_{3}}, a_{n_{n}}, \ldots\right) \rightarrow \text { Subsequence of }\left(a_{n}\right)
$$

- Exfintion: Ret $\left(a_{n}\right)$ be a sequance and $n_{1}<n_{2}<n_{3}<\ldots$ Ie a strictly ifcreasing sequence of natural nos, then $\left(a_{n}, a_{n}, \ldots\right)$ is callid sulsequenct of $\left(a_{n}\right)$
(0) Sulsiduance is nat anique
eg $(2,4,6,5, \ldots) \mathrm{seq}$
$\left(\begin{array}{l}(4,8,10, \ldots) \subset \text { sulesequence } \\ (8,4,10)\end{array}\right.$
$(8,4,10, \ldots) \times$
* $f\left(a_{n}\right)$ convorgent sequena $\&\left(a_{n}\right) \rightarrow 1$, then $\left(a_{n}\right) \rightarrow l$
(0) Result subusequence of a convergent sequina seniborie at the same point.

Pref: given: $\left(a_{n}\right) \rightarrow l$

$$
n_{k} \geqslant k
$$

$$
\text { TS: }\left(a_{n_{k}}\right) \rightarrow l
$$

Let $\varepsilon>0$ be given

$$
\begin{aligned}
& \operatorname{Fan} N \in \mathbb{N} \text { s. } \cdot\left|a_{n}-l\right|<\varepsilon \forall n \geqslant N \\
& \quad \Rightarrow\left|a_{n_{k}}-l\right|<\varepsilon \forall n_{k} \geqslant N \\
& \therefore\left(a_{n_{k}}\right) \rightarrow l
\end{aligned}
$$

Q. show that $\lim b^{n}=0$, if $0<b<1$.

Sen: $\left(b, b^{2}, b^{3}, \ldots\right) \rightarrow$ Monotone decreasing \& Bounded below st

$$
\ldots<b^{4}<b^{3}<b^{2}<b<1
$$

By MCT, $\left(b^{n}\right)$ is convergent $\rightarrow\left(b^{n}\right)$ would converge to its infinum Suppose $\left(b^{n}\right) \rightarrow l$ (iinuimum of $\left(b^{n}\right)$)
$\left(b^{2 n}\right)=\left(b^{2}, b^{4}, b^{6}, \ldots\right)$: subsequence

$$
\left(b^{2 n}\right) \rightarrow l
$$

$$
\lim b^{2 n}=\ell
$$

$\Rightarrow \lim \left(b^{n} \cdot b^{n}\right)=l \quad\left(\lim b^{n}\right) \cdot\left(\lim b^{n}\right)=l$ (By Algebraic Limits Theorem) ie. $l^{2}=l \Rightarrow l=0$ or l
As infimum $\neq 1$, so, 1 is rejected. $\Rightarrow l=0$
$\therefore \lim b^{n}=0$

* $\left(\frac{1}{5}, \frac{-1}{5}, \frac{1}{5},-\frac{1}{5}, \ldots\right) \rightarrow$ Is it cot. ? No.

$$
\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \ldots\right) \rightarrow \frac{1}{5} \quad \&\left(\frac{-1}{5},-\frac{1}{5},-\frac{1}{5}, \ldots\right) \rightarrow-\frac{1}{5}
$$

It carnot cat as its subsequences converge at distinct points

- Cauchy Sequences: Let $\varepsilon>0$ be given
$\left(a_{n}\right)$: sequence
If I some $N \in \mathbb{N}$ such that $\left|a_{m}-a_{n}\right|<\varepsilon \quad \forall m, n \geqslant N$ Distance b/w the terms. of the seq.
(*) Result: Cauchy sequences are bounded.

For man, we uss $\left|a_{N}\right|<\left|a_{n}\right|+1$ ie. $\left|a_{n}\right|>\left|a_{N}\right|+1+n>N$

Proof: (an). Cauchy sequence
set $\varepsilon=1$
Fan Ne st $\left|a_{m}-a_{m}\right|<q \mid \forall m, n>N$
on particular; $\left|a_{N}-a_{n}\right|<1+n \geqslant N$

$$
\text { ie., } a_{n} \in\left(a_{N}-1, a_{N}+1\right) r n>N
$$

$$
\begin{aligned}
& \text { A) }\left|a_{N}\right|-\left|a_{n}\right|\left|<\left|a_{N}-a_{n}\right| \rightarrow\right| a_{N}\left|-\left|a_{n}\right|<\left|a_{N}-a_{n}\right| \text { on }\right| a_{n}\left|-\left|a_{N}\right|<\left|a_{N}-a_{n}\right|\right. \\
& \Rightarrow\left|a_{N}\right|-\left|a_{n}\right|<1 \quad \&\left|a_{n}\right|-\left|a_{N}\right|<1 \quad \forall n \geqslant N \\
& \left.\begin{array}{l}
\Rightarrow\left|a_{n}\right|<\left|a_{n}\right|+1 \\
\frac{a_{s}}{}\left|t a_{n}\right|<\left|a_{n}\right|+1
\end{array}\right\} \forall n>N \\
& \text { Let } M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,\left|a_{N}\right|+1\right\} \\
& \Rightarrow\left|a_{n}\right| \leq M \quad \forall n
\end{aligned}
$$

*) Result: Cauchy in $\mathbb{R} \Leftrightarrow$ catch Cg t.
Proof: $\Leftrightarrow \Leftrightarrow)$ et t $\left(a_{n}\right)$ be copt.
TS. $\left(a_{n}\right)$ is Couch y

$$
\text { Suppose }\left(a_{n}\right) \rightarrow l
$$

Let $\varepsilon>0$ ie gwen, then 3 N eN st. $\left\lvert\, a_{n}-l<\frac{\varepsilon}{2} \forall n \geqslant N\right.$
$\Rightarrow\left|a_{m}-l\right|<\& \quad \forall m \geqslant N$

$$
\left|a_{m}-a_{n}\right|=\left|a_{m}-l+\left|-a_{n}\right|<\left|a_{m}-l\right|+\left|a_{n}-l\right|<\varepsilon+\varepsilon=\varepsilon \quad \forall m, n>N\right.
$$

(Q) $\left|a_{n}-l\right|<\varepsilon \&\left|a_{m}-l\right|<\varepsilon \Rightarrow \mid a_{m}-a_{n} k^{2} 2 \varepsilon^{2} \forall m, n \geqslant N$
(\Rightarrow) Let $\left(a_{n}\right)$ be cauchy
IS: $\left(a_{n}\right)$ is coat.
$\left(a_{n}\right)$ cauchy \Rightarrow bounded sequence
$\Rightarrow\left(a_{n}\right)$ has some convergent subsequence, say $\left(a_{n_{k}}\right)($ gas
suppose $\left(a_{n_{k}}\right) \rightarrow x$
aim: $\left(a_{n}\right) \rightarrow x$
$A\left(\overline{a_{n}}\right)$ is (achy \& $\varepsilon>0$ is queen, so, \exists an N N N st. $\left|a_{m}-a_{n}\right|<\varepsilon \forall n, m>1$ As $\left(a_{n_{k}}\right) \rightarrow x, 7$ an MeN set $\left|a_{n k}-x\right|<\varepsilon \forall n_{k} \geqslant M$
K et $S=\max \{H, N\}<$

$$
\begin{aligned}
& \quad\left|a_{n}-x\right|=\left|a_{n}-a_{m}+a_{m}-a_{n_{k}}+a_{n_{k}}-x\right| \\
& \quad \leqslant\left|a_{n}-a_{m}\right|+\left|a_{m}-a_{n k}\right|+\left|a_{n k}-x\right|<\varepsilon+\varepsilon+\varepsilon \text {, if } m, n, n_{k} \geqslant s \\
& \therefore\left|a_{n}-x\right|<3 \varepsilon \quad \forall n \geqslant s
\end{aligned}
$$

$7 n_{2}$ s.t. $n_{2}>n_{1}$ as if not then I_{2} has finitely many terms *
Classtime Page No. 73
The Bokano-Weierstrass Theorem: A bounded sequence has a convergent subsequence.
Proof: $\left(a_{n}\right)$: Bounded sequence
There exists an $M>0$ such that $\left|a_{n}\right|<M \forall n \in \mathbb{N}$

I-: half containing infinitely many terms.
${ }^{5}$ dosed interval.
I_{2} : half of I_{1} containing infinitely many terms $I_{1} \cap I_{2} \cap I_{3} \cap \ldots \rightarrow$ all are closed intervals
Nest \& $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots$.
By Nested Interval Property, $\cap I_{n} \neq \phi$
$\Rightarrow F$ some $x \in \mathbb{R}$ sit. $x \in \cap_{n \in \mathbb{N}} I_{n}$
Pick n_{1} from I_{1} and Pick $a_{n_{2}}$ from I_{2} dit. $n_{2}>n_{1}$
Pick $a_{n_{3}}$ from I_{3} sit. $n_{3}>n_{2}$
So, we have got a subsequence $\left(a_{n_{k}}\right)$ s.t. $-a_{n_{k}} \in I_{k}$
$a_{n} \in I_{1} \& x \in I_{1}$ and maximum distance between $x \& a_{n}$ is the length of I_{1} and so on.
\therefore Maximum distance $b / w x \& a_{n_{R}}$ is the length of I_{k} and Which is becoming smaller 4 smaller, so, the terms of the subsequence getting doser and closer to x.
Claim: $\left(a_{n_{n}}\right) \rightarrow x$
gwen: $\varepsilon>0$
WISH: $\left|a_{n_{k}}-x\right|<\varepsilon$

$$
\begin{gathered}
a_{n_{k}}, x \in I_{k} \Rightarrow\left|a_{n_{k}}-x\right| \leqslant l\left(I_{k}\right)=\frac{M}{2^{k-1}} \\
\left(\because l\left(I_{1}\right)=M \Rightarrow l\left(I_{2}\right)=\frac{M}{2} \Rightarrow l\left(I_{3}\right)=\frac{M}{2^{2}} \quad \cdots l\left(I_{k}\right)=\frac{M}{2^{k-1}}\right)
\end{gathered}
$$

If we show. $M<\varepsilon$, weare done.

$$
\frac{M}{2^{k-1}}<\varepsilon^{2^{k-1}} \text { i.e. } 2^{k-1}>\frac{M}{\varepsilon}(K-1) \log _{2} 2>\log _{2} \frac{M}{\varepsilon}(M, \varepsilon>0)
$$

$2.6 * x>1+\log _{3} y$
Choose any neural number. $N>1+\log _{2}$ is

$$
\left|a_{n_{k}}-x\right|<\varepsilon \quad \forall n=k=N
$$

* If a sequence has a convergent subsequence, then it is bounded? Is it true? No
\&.g: $\langle 1,2,3,1,4,1,5, \ldots\rangle$ is not bounded but has a convergent subsequence $(1,1,1,1, \ldots\rangle$
- Review:

$$
\begin{aligned}
& a-8 \quad a+\varepsilon \quad V_{t}(a)=\{x \in R: 1 x(a)<\varepsilon\} \\
& A \neq \phi, A \subset \mathbb{R} \\
& \text { open set: lace point is "interior"" } \frac{(1 / 2),}{A}, a \text { is interior }
\end{aligned}
$$

- Definition: A set $0 \subset \mathbb{R}$ is said to be open if for all $a \in 0, \mp$ $V_{\varepsilon}(a)$ st. $V_{\varepsilon}(a) \subset 0$
* Edepends or a as when the ph. a' comes closer to the boundary the radius (i) diculeases
Q Which of the following are open?
(1) $L a, b)$
(a, (a)
(3) Q
(a) \mathbb{R}
(3) \mathbb{N}
(1) Anon empty finite set
(8) The empty set ϕ

Sa* $10-1,1$ a is not interior

$$
\text { \$ any } \varepsilon>0 \text { st. } V_{\varepsilon}(a)<[a, b]
$$

(c) $\alpha \in(a, b)$

$\varepsilon=\min \{|\alpha-a|,|\alpha-b|\}$

$$
V_{\imath}(\alpha) \subseteq(a, b)
$$

Card $V_{\ell}(a)=c$

* Fry open interval is an open set.
* A non empty set with cardinality $<C(c a r d i n a l i t y ~ o f ~ R) ~ C a n ' t ~ b e ~$ open
(3) Cardinality of $Q<\hat{\imath}, \therefore$ \& can' the open
(b) Cardinality of $N<C, \therefore \mathbb{N}$ can't be open.
(6) Empty set is always open. $\binom{P \rightarrow Q, P \rightarrow F a l s e, ~ t h e n ~}{P}$
* $\left\{\delta_{\lambda}: \lambda \in \Lambda\right\} \rightarrow$ collection of $O_{\lambda}{ }^{\prime} s$, where $\lambda \in \Lambda$
indexing set.
$\sigma=\bigcup_{\lambda \in A} \sigma_{\lambda}$ is it open ?
arbitrary union
Let $a \in O$ i.e. $a \in \bigcup_{\lambda \in n} O_{\lambda}$
Then 7 some $\partial_{\lambda_{0}}$ sit. $a \in O_{\lambda_{0}} \rightarrow$ open
There exists $V_{\varepsilon}(a)$ sit. $\left.V_{\varepsilon}(a) \subseteq \gamma_{\lambda_{0}}\right\} \Rightarrow V_{\varepsilon}(a) \in \sigma$
But $\sigma_{\lambda_{0}} \subseteq \cup_{\lambda \in \Lambda}^{v_{\lambda}} \sigma_{\lambda}$
finite | infinite
* Result: othe union of any number of open sets is open.
(2) $r_{\left\{v_{\lambda_{i}}: i=1,2, \ldots, n\right\} \text { : Finite collection of opensets. } 1}$

The intersection of a finite number of open sets is open.
Proof: ${ }^{{ }^{1}}$ TS: $\gamma=\sum_{i=1}^{n} \gamma_{\lambda_{i}}$ is open

$$
\begin{aligned}
& \text { Ret } a \in \bigcap_{i=1}^{n} \sigma_{\lambda_{i}} \\
& a \in \sigma_{\lambda_{i}} \forall i=1,2, \ldots, n \\
& a \in \gamma_{\lambda_{1}} \Rightarrow f \text { an } V_{\varepsilon_{1}}(a) \text { st. } V_{\varepsilon_{1}}(a) \subseteq \sigma_{\lambda_{1}} \\
& a \in \sigma_{\lambda_{2}} \Rightarrow \exists \text { an } V_{\varepsilon_{2}}(a) \text { sit. } V_{\varepsilon_{2}}(a) \subseteq \gamma_{\lambda_{2}} \\
& \vdots \\
& a \in \sigma_{\lambda_{n}} \Rightarrow \operatorname{Fan} V_{\varepsilon_{n}}(a) \text { sit } V_{\varepsilon_{n}}(a) \subseteq \sigma_{\lambda_{n}} \\
& \varepsilon:=\min \left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right\} \\
& \therefore V_{\varepsilon}(a) \subseteq \prod_{i=1}^{n} \theta_{\lambda_{i}}
\end{aligned}
$$

* If ur consider the intersection of infinite number of open sets, then $\min =\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}, \ldots\right\}=0$ or may not be exist, which creates problem, so, we take intersection of finite number of open seals.

No of detention ${ }^{\circ} V_{8}(\alpha) \cap A$ has element other than α Inv $V_{2}(A)$ or $V_{B}(\infty)$ intersects with A at some point other than α.
Lg: की: $\left(\frac{-1}{n}, \frac{1}{n}\right)=\{0\}$
(*) Intersection of open sets may not be open
$3 \cdot 116$
*(1) $(a-\varepsilon, a+\varepsilon)$ \& 2 for all $\varepsilon>0 \Rightarrow 2$ is not open Irrationals are there.
(b) $a \in \mathbb{N}$

$$
(a-\varepsilon, a+\varepsilon) \nsubseteq \mathbb{N}+\varepsilon>0 \Rightarrow \mathbb{N} \text { is not open }
$$

(3) $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, n<\infty \rightarrow$ Finite set $\left(a_{1}-\xi, a_{1}+\varepsilon\right) \subseteq A$? No, Infinite set can't be subset of finite set Infinite set Finite set
(4) Empty set (ϕ) is open set

Lb|c $a \in A \Rightarrow$ a is an interior pt. of A
$P \Rightarrow Q$, as P is never true $s o, P \Rightarrow Q$ is always true]
(3)

- Limit point of a set: $A \subset \mathbb{R}, A \neq \phi, \alpha \in \mathbb{R}$

Take any noil of $\alpha^{\alpha+1}$
(There exists an element of A, different from α.
$\rightarrow \alpha$ is a limit point of A.
(2) Limit point may not belong to the set.

Q $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Show that O is a limit point of A.
se* Any $\in>0,7 m_{0} \in \mathbb{N}$ sit. $\frac{1}{m_{0}}<r$ (By Archimedean Property)

Here accumulation of pto ff

- Definition: Let $\phi \neq A \subset \mathbb{R}$, Then $\alpha \in \mathbb{R}$ is called a limit point of A if for each $\varepsilon>0, V_{\varepsilon}(\alpha)$ intersects A at some point other thew
* Result: α is a limits point of $A \Leftrightarrow$ Every E-note of α contains infinitely many points of A.
purges: (\Rightarrow) Ret α be a limit point of A and $\varepsilon>0$ be guin.
IS: $V_{E}(\alpha)$ has an infinite no. of clements of A. Let if possible, $V_{\varepsilon}(\alpha) \cap A$ be finite
suppose $V_{\varepsilon}(a) \cap A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

$$
\varepsilon^{\prime}=\min \left\{\left|\alpha-a_{1}\right|,\left|\alpha-a_{2}\right|, \ldots,\left|\alpha-a_{n}\right|\right\}
$$

$V_{E_{1}}(\alpha)$ has no point of A different from $\alpha \Rightarrow \alpha$ is not a limit point of A.
[We con't take any $a_{i} \in v_{\varepsilon}(\alpha) \cap A$ equal to α, as if ur do that. then $\varepsilon^{\prime}=\min \left\{0_{1}\left|\alpha-a_{1}\right|\right.$, $\left.1 \alpha-\operatorname{an} \mid z=0 \Rightarrow=\operatorname{css} \varepsilon^{\prime}>0\right]$
\Leftrightarrow (\Leftrightarrow Trivial. $\alpha+\varepsilon$
(as if $V_{\varepsilon}(\alpha)$ contains infinitely many pts. of A, then infinitely many pts. of A are going olowere to $A \Rightarrow \alpha$ is its limit poind) hinge accumulation is increasing

Q- Find the limit pouts.
(1) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$

$$
\begin{aligned}
& \text { (2) }\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\} \\
& , A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}
\end{aligned}
$$

Son: (1)
(4) $2 \mathbb{N}$

$$
\varepsilon=\min \left\{\frac{1}{s-1}-\frac{1}{s}, \frac{1}{s}-\frac{1}{s+1}\right\}
$$

$V_{\varepsilon\left(\frac{1}{\delta}\right)}$ has no point of $A^{s+1} \rightarrow \frac{1}{\delta}$ is not a limit point of A.

$v_{v_{2}}(1)$ has no point of A different from 1.
$\Rightarrow 1$ is not a limit point of A.
We don't take $s=1$ as $\frac{1}{s-1}$ doesn't exist.

Synonyms $\&$ Limit point

Let $\alpha>1$
cana be a limit point of A ?

$$
\varepsilon=\alpha-1
$$

$V_{\varepsilon}(\alpha)$ has no point of $A \Rightarrow \alpha$ is not a limit point of A

$$
\text { Let } \alpha<0
$$

$$
\varepsilon=-\alpha
$$

Let $\alpha \in(0,1), \alpha \notin A$

There exists an $s \in \mathbb{N}$ st. $\frac{1}{s+1}<\alpha<\frac{1}{s}$

$$
\operatorname{Let} \varepsilon=\min \left\{\alpha-\frac{1}{b+1} ; \frac{1}{s}-\alpha\right\}
$$

$V_{\varepsilon}(\alpha) \cap A=\phi \stackrel{\delta+1}{\Rightarrow} \alpha$ is not a limit point of A.

$$
A_{i}^{\prime}=\{0\}
$$

Derurd set of A : collection of all limit point of A

* $x=\left\{(-1)^{n}+\frac{1}{n}: n \in \mathbb{N}\right\}$

$$
\text { a } x^{\prime}=\{1,-1\} \rightarrow \text { Limit points of } x
$$

By Archimedean property, $\exists m_{0} \not 2 \mathbb{N}$ s.t. $\frac{1}{m}<\varepsilon$

By Archimedean property, $7 \mathrm{~m} \%$ odd natural \# m_{0}^{\prime} sit.

$$
\frac{1}{m_{0}^{\prime}}<\varepsilon \Rightarrow-1+\frac{1}{m_{0}}<-1+\varepsilon
$$

$\Rightarrow 0$ is not a limit point of x.
(2) $B=\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$

Fix m, vary n

$e>0$ legmen, $3 n_{0} \in \mathbb{N} \rightarrow \frac{1}{n_{0}}$
vary both mande n,

$$
\begin{aligned}
& -\frac{1}{-1}, \text { There exists } m_{0}, n_{0} \in \mathbb{N} \rightarrow \frac{1}{m_{0}}<\frac{\varepsilon}{2} \& \frac{1}{n_{0}}<\frac{\varepsilon}{2} \\
& B^{\prime}=\{0\} \cup\left\{\frac{1}{n}+\frac{1}{n_{0}}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon=0+\varepsilon\right\}
\end{aligned}
$$

(3) $\alpha \in \mathbb{R}$, Jor any $\varepsilon>0,(\alpha-\varepsilon, a+\varepsilon)$ contains infinitely many rational numbers.

$$
\begin{aligned}
& \text { numbers. } \quad \frac{1}{\alpha-\varepsilon}{ }^{1} Q^{\prime}=\mathbb{R}
\end{aligned}
$$

(4) $\mathbb{N}^{\prime}=\phi$
$\alpha \in \mathbb{R},\left(\alpha-\frac{1}{2}, \alpha+\frac{1}{2}\right)$ non as at most one element of \mathbb{N}
${ }^{2}$ i.e. $\left.\left(\alpha-\frac{1}{2}\right), a+\frac{1}{2}\right) \cap N \mid \leq 1$ but we want infinetty many elements $\stackrel{2}{\rightarrow} \alpha$ is not a limit point of \mathbb{N}
$\Rightarrow a \notin \mathbb{N}^{\prime} \Rightarrow \alpha \mathbb{N}^{\prime}=\phi$ (as it has no ale no real no canst be limit point of (\mathbb{N})

$$
a_{n} \in \mathbb{N} \forall n \in \mathbb{N}
$$

(*) Result: $\alpha \subset A^{\prime} \Leftrightarrow$ There exists a sequence $\left(a_{n}\right)$ in A such that $a_{n} \longrightarrow \alpha$, where $a_{n} \neq a \forall n \in \mathbb{N}$
($\left(a_{n}\right)$ can't be cost seq.)

$$
\text { eg: }\langle 1,1,2,2,1,1,2,2, \ldots\rangle \text { is in }\{1,2,3\}
$$

Poof: \Leftrightarrow Let $\alpha \in \not A^{\prime}$
$(\alpha-1, \alpha+1)$ has an element of A, other than α, say $a_{1},\left|a_{1}-\alpha\right|<\mid$ $\left(\alpha-\frac{1}{2}, \alpha+\frac{1}{2}\right)$ has an element of 1 , other than α, say $a_{2},\left|a_{2}-\alpha\right|<\frac{1}{2}$ $\left(\alpha-\frac{1}{3}, a+\frac{1}{3}\right)$ has an element of A, other than $\alpha, \operatorname{say} a_{3},\left|a_{3}-\alpha\right|<\frac{1}{3}$ $\left(\alpha-\frac{1}{k}, \alpha+\frac{1}{k}\right)$ has an element of A, other than α, say $a_{k}, 1 a_{k}-\alpha \left\lvert\, \frac{1}{k}\right.$ maim: $\left(a_{n}\right) \rightarrow \alpha$

Guin: E>0

$$
\left|a_{k}-\alpha\right|<\frac{1}{k} \quad \forall k \in \mathbb{N} \rightarrow \otimes
$$

By Archimedean property, $\exists m_{0} \in \mathbb{N}, \exists \frac{1}{m_{0}}<\varepsilon$

$$
\begin{gathered}
\text { From } \frac{1}{k} \leqslant \frac{1}{m_{0}}<\varepsilon \forall k \geqslant m_{0}-(x) \\
\left|a_{k}-\alpha\right|<\varepsilon \forall k \geqslant m_{0}
\end{gathered}
$$

$\star \mathbb{R}^{\prime}=\mathbb{R}$.
$y \in \mathbb{R}$, we can find a sequence of rational numbers which converges to y.
(sequence in \mathcal{L}) $\rightarrow \pi$ is $\{3,3.1,3.141,3 \cdot 1415, \ldots\} \rightarrow \pi$ deamal expansion of π a_{n} : exact value of π, unto n decimal points.

- Isolated point: $A \subseteq \mathbb{R}, A \neq \phi$

A number $\alpha \in A$ is called an wolated point of A if α is not a limit point of A.
Why the word isolated? has no accumulation $\alpha \in A^{\prime} \Rightarrow 7 V_{\varepsilon}(\alpha)$ s.t. $V_{\varepsilon}(\alpha)$ has $n \theta \quad \alpha-\varepsilon \dot{\alpha}_{\text {iscotata }}$ dement of A other than α.

* Isolated point of $A \rightarrow$ element of A

Limit point of $A \rightarrow$ maynot be an element of A
(5) $C=\{1,2,3\}$ has no limit point but each pt, is isolated pt

* tach element of a finite set is its isolated point.
* Collection of isolated point of $A=A \backslash A^{\prime}$ e.g:OQ|R $\mid \mathbb{R} \Rightarrow Q$ has no isolated point
(2) $\left.\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \right\rvert\, \underset{\& A}{ } \rightarrow$ every point is an isolated point. \& A as $A \mid A^{\prime}=A\left(\cos A^{\prime}=\{0\}\right)$

Q $\mathbb{N}\left|\mathbb{N}^{\prime}=\mathbb{N}\right| \phi=\mathbb{N} \rightarrow$ tach point is an isolated point

- Aiscuck st tach element is an isolated point.

$$
\lg :\left\{\frac{1}{n} n \in \mathbb{N}\right\}, \mathbb{N}
$$

* If the limit points belong to the set, i.e., $A^{\prime} \subseteq A$, then

A: closed set

$$
\begin{aligned}
& \alpha \in A^{\prime} \& A^{\prime} \subset A \\
& \exists a^{*} \text { sequence }\left(a_{n}\right) \text { in } A \text { st. }\left(a_{n}\right) \longrightarrow \alpha, \alpha \in A, a_{n} \neq \alpha
\end{aligned}
$$

- Arfinition: A set $A \subset \mathbb{R}$ is called a closed set, if it contains all its limit points. In symbols, $A^{\prime} \subseteq A$.

Q Are the following sets closed?
(1) \mathbb{N}
(2) 2
(3) $\mathbb{R} \mid \mathbb{R}$
(4) $\{1,2,3,4\}$
(5) \mathbb{R}
se" $O N^{\prime}=\phi \subseteq \mathbb{N} \Rightarrow \mathbb{N}$ is closed
(2) $\mathbb{R}^{\prime}=\mathbb{R} \neq R \Rightarrow R$ is not closed.
(3) $(\mathbb{R} \mid Q)^{\prime}=\mathbb{R} \nsubseteq \mathbb{R}|\mathbb{Q} \Rightarrow \mathbb{R}| \mathbb{R}$ is not closed.
(4) $A-\{1,2,3,4\}$ has no limit point. $\Rightarrow A^{\prime}=\phi \subseteq A \Rightarrow A$ is closed

* If $A^{\prime}=\$$, then A is closed.
* Discrete set is a closed set? No

Lg: $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is discrete but not closed.

* $A \subseteq B \Rightarrow A^{\prime} \subseteq B^{+}$? Yes

Let $\alpha \in A^{\prime} \Rightarrow V_{\varepsilon}(\alpha)$ has an element of A, other than $\alpha \forall \varepsilon>0$
$\Rightarrow V_{\varepsilon}(\alpha)$ has an element of B, other than $\alpha \forall \varepsilon>0(\because A \subseteq B)$ $\Rightarrow \alpha \in B^{\prime}$

$$
\therefore A^{\prime} \subseteq B^{\prime}
$$

(*) $A \subseteq B \Rightarrow A^{\prime} \subseteq B^{\prime}$.
(b)

$$
\begin{aligned}
& \text { Q }^{\prime}=\mathbb{R} \\
& \text { L} \subseteq \mathbb{R} \Rightarrow \mathbb{Q}^{\prime} \subseteq \mathbb{R}^{\prime} \Rightarrow \mathbb{R} \subseteq \mathbb{R}^{\prime} \Rightarrow \mathbb{R}^{\prime}=\mathbb{R} \Rightarrow \mathbb{R} \text { is closed. (as } \mathbb{R} \subseteq \mathbb{R} \text {) }
\end{aligned}
$$

(6)

$$
\begin{aligned}
& A=\left\{\frac{1}{n} ; n \in N\right\} \\
& A^{\prime}=\{0\} \notin A \Rightarrow A \text { is not closed }
\end{aligned}
$$

* Universal set (t) is always closed as it has all limit points inside it.
* "Sets are not doors"

Doors: Open \Rightarrow Not closed and Close \Rightarrow Not Open But it this condition is not in sets.
\& g: OR: open \& closed] Copen sets \rightarrow Closed as uriel as open
(2) $(a, b]$ is not open $(: b$ is not interior)
, is not dosed (\because a is a limit paint, but not an
Nether open element of the set)
nor closed
(3) (a, b) is open and not closed

5- (a) construct a sequence $\left(a_{n}\right)$ in (a, b) st. $\left(a_{n}\right) \rightarrow a, a_{n} \neq a$.

$$
\begin{aligned}
& \underset{a}{\frac{1}{m_{0}}\left(\left.a+\frac{1}{m b}|1| \right\rvert\,\right.} a+\frac{1}{2} a+1 \\
& \left(\begin{array}{l}
\left.a+1, a+\frac{1}{2}, a+\frac{1}{3}, a+\frac{1}{4}, \ldots\right) \rightarrow a \\
7 m \text { set. }
\end{array}\right. \\
& \exists m_{0} \in \mathbb{N}^{2} \text {.t. } \frac{1}{m_{0}}\langle | b-a \left\lvert\, f \Rightarrow a+\frac{1}{m_{0}} \in(a, b)\right. \\
& \text { So, the required sequence is }\left(a+\frac{1}{m_{0}}, a+\frac{1}{m_{0}+1}, a+\frac{1}{m_{0}+2}, \cdots\right)
\end{aligned}
$$

(b) \& search a sequence $\left(b_{n}\right)$ in (a, b) st. $\left(b_{n}\right) \rightarrow b, b_{n} \neq b$
(*Result: $\sigma \subset \mathbb{R} \frac{1}{m_{0}^{\prime}} \in \mathbb{N}$ s.t. $\left.\left.\frac{1}{m_{0}}<|b-a| \Rightarrow b-\frac{1}{m_{0}^{\prime}}(a, b) \right\rvert\, b-\frac{1}{m_{0}^{\prime}}, b-\frac{1}{m_{0}^{\prime}+1} \neq b \overline{\frac{1}{m_{0}+2}} \cdots\right)$ σ is open $\Leftrightarrow \gamma^{c}$ is closed.
Proof: $(\Rightarrow) \gamma$ is open
TS: σ^{c} is closed
Let if possible, δ^{c} be not closed
There exists some $\alpha \in \mathbb{R}$ sit $\alpha \in\left(O^{c}\right)^{\prime}$ but $\alpha \notin \sigma^{c}$
σ^{c} is closed $\Rightarrow\left(O^{c}\right)^{\prime} \subseteq \partial^{c}$

$$
x<x
$$

$\Rightarrow \alpha \in \gamma$
But δ is open, $\bar{\sigma}$ some $\varepsilon>0$ st. $(\alpha-\varepsilon, \alpha+\varepsilon) \leqslant 0$
(.e. $(\alpha-\varepsilon, \alpha+\varepsilon) \cap D^{c}=\phi \Rightarrow \alpha \phi(0)^{\prime}$ i.e α is not a limit pt. of σ^{c}
(\Leftrightarrow) Let O^{c} be closed.
TS: O is open.
Suppose $a \in \nabla \Rightarrow a \notin O^{c} \Rightarrow a$ is not limit point of $\sigma^{c}\left(a s \gamma^{c}\right.$ is dosed) $\Rightarrow a \notin\left(0^{c}\right)^{\prime}$
\Rightarrow I an $\varepsilon>0$ st. $(a-\varepsilon, a+\varepsilon)$ has no element of oc other thana $\Rightarrow(l-\varepsilon, a+\varepsilon) \subset \sigma \Rightarrow \gamma$ is open

4916

$$
\begin{align*}
& F^{\prime} \in F \\
& \left\{\begin{array}{l}
\left.a \in A^{\prime} \Leftrightarrow \text { There exists a seq. }\left(a_{n}\right) \text { in } A \&, t .\left(a_{n}\right) \rightarrow a, a_{n} \neq a \rightarrow R 1\right) \\
\text { catch }
\end{array}\right. \\
& \text { Take any cauchy sequence }\left(a_{n} \text { in } F,\left(a_{n}\right) \rightarrow a \in F(\because F \text { is closed) }\right. \tag{12}\\
& \text { limit of }\left(a_{n}\right) \Rightarrow \text { limitpoint of } F
\end{align*}
$$

* Result: A set F is closed iff any Cauchy sequence in F, converges to a limit, which is an element of F
Proof: (\Rightarrow) Done
$\Leftrightarrow \frac{\text { T.S: F is closed, i.e., } F^{\prime} \in F}{\text { Let }}$
Let $a \in F$
Then 7 a seq, $\left(x_{n}\right)$ in Fs.t. $\left(x_{n}\right) \rightarrow a, x_{n} \neq a$. (Using ((11))
HyPOTHESIS: Any Cauchy sequence in F, converges to a limit, whish is an cement of F.
$\Rightarrow\left(x_{n}\right)$ is Cauchy in F sit. $\left(x_{n}\right) \rightarrow a$ (using (22))
$\Rightarrow a \in F$ (using Hypothesis)
lg: (1) Q

$$
\begin{aligned}
&\{3,3 \cdot 1,3 \cdot 14, \ldots\} \text { is convergent in } \mathbb{R} \Rightarrow \text { Cauchy in } \mathbb{R} . \\
& \Rightarrow \text { cauchy in } Q \\
&\left(a_{n}\right) \rightarrow \pi \notin Q
\end{aligned}
$$

(*) wry closed interval is a closed set.
$\therefore 2$ is not closed as we find a cauchy seq in 2 ten which doem't converge g to a limit, which is an element of $2(\pi+2)$)
(2) $[a, h]=A$

$$
\text { if } \alpha<a, \alpha \in A^{\prime} \text { ? } N_{0}
$$

Hf $\alpha>b, \alpha \notin A^{i}$

$$
\text { if } a \leqslant \alpha<b, \alpha \in A^{\prime} \text { ? yes }
$$

$$
\therefore A^{\prime}=[a, b]=A \Rightarrow A^{\prime} \subseteq A, \therefore[a, b] \text { is closed. }
$$

Q) Take a cauchy sequence $\left(a_{n}\right)$ in $A=[a, b]$
$\Rightarrow\left(a_{n}\right)$ is cauchy in \mathbb{R}
$\Rightarrow\left(a_{n}\right)$ is convergent

$$
\begin{aligned}
& \operatorname{Let}\left(a_{n}\right) \rightarrow x \\
& \left(a_{n}\right) \text { in } A, a \leq a_{n} \leq b+n \in \mathbb{N} \\
& \Rightarrow a \leq x \leq b \text { (By order Limit Theorem) } \\
& \text { i.e. } x \in[a, b] \Rightarrow x \in A \\
& \therefore[a, b] \text { is closed. }
\end{aligned}
$$

(3)

$$
\text { (3) } \begin{aligned}
& B=[a, b) \\
& B^{\prime}=[a, b] \\
& \Rightarrow B^{\prime} \nsubseteq B
\end{aligned}
$$

$\Rightarrow B$ is not closed $=$

By Archimedean Property, $\exists m_{0} \in \mathbb{N}-\frac{1}{m_{0}}<\varepsilon$.

$$
\Rightarrow \frac{-1}{m_{0}}>-\varepsilon \Rightarrow b \frac{-1}{m_{0}}>b-\varepsilon=a
$$

$$
\begin{aligned}
& \left(C_{n}\right)=\left\langle b-\frac{1}{m}, b-\frac{n_{0}}{c_{1}}, b-\frac{I_{1}^{c_{2}}}{m_{0}+2}, \ldots\right\rangle \operatorname{seq} \text { in } B \\
& \text { aim: }\left(c_{n}\right) \rightarrow b
\end{aligned}
$$

$\varepsilon>0$ be gwen
GOAL $|\ln -b|<\varepsilon$

$$
\text { i.e }\left|b_{p}-\frac{1}{m_{0}+n}-b\right|<\varepsilon \text { i.e. } \frac{1}{m_{0}+n}<\varepsilon
$$

 bertuany (bin) \qquad 85

$\Rightarrow \frac{1}{n}<8+n<1 \quad$ ($\left.\frac{1}{n}+1 / \frac{14}{1} / 5\right)$
$\Rightarrow \frac{n_{1}}{\text { men }}<8 \frac{1}{n}<2$ 4nain

$$
\therefore \frac{1}{m_{0}+n}<2+n \geqslant N
$$

So, $\left(C_{n}\right)$: couch seq, in B, which unverges to b \& B.
3 B is not closed set.
(4) $\{1,2,3\}=\mathrm{C}$

Let $\left(a_{n}\right)$: cauchy in $C l \sum\left(a_{n}\right)$ cauchy in $\left.R \rightarrow a_{n}\right)$ is ypruvergent.
Let $\left(a_{n}\right) \Rightarrow \ell$
(Yam: lC]

In particular, $\left|a_{N}-a_{N+1}\right|<\frac{1}{2}$,
$\Rightarrow a_{N}=a_{N+1}$ ('iminambum distance bi 2 distinct
fergisis of $($ is 1)
So, $\left|a_{N}-a_{m}\right|<\frac{1}{2} \quad \forall m \geqslant N$
$\Rightarrow a_{N}=a_{m} \forall m \geqslant N \Rightarrow \operatorname{seq}$. $\left(a_{n}\right)$ is eventually constant.
$\left(a_{n}\right) \rightarrow a_{N} \in C \Rightarrow C$ is closed.
$=\{1,4,8\}$
(6) $D=\{1,4,8\}$

Take any $\varepsilon<3$ oboget contradiction (equality)
Choose $O<\varepsilon<$ Himmum distance among the elements of A.

$$
\left.f^{-1}((-\infty, 1 \infty)]\right)
$$

Tnt $\operatorname{cet} S=\left\{x \in R: x^{6}-x^{5} \leq 100\right\}$ \& $T=\left\{x^{2}-2 x: x \in(0, \infty)\right\}$. Then $S \cap$ is
(a) dosed and bounded
(b) closed but not bounded
(L) bounded but not closed
(d) neither closed nor bounded

Sext

$$
\begin{aligned}
& f(x)=x^{6}-x^{5} \rightarrow \frac{f^{\prime}(x)=6 x^{5}-5 x^{4}=x^{4}(6 x-5)}{1+}+\frac{5}{6} \lim _{x \rightarrow-\infty} x^{6-x^{5}=\infty(\because \text { per of x even) }} \\
& f^{\prime}(0)=0 \\
& \lim _{x \rightarrow \infty} x^{6}-x^{5}=\lim _{x \rightarrow \infty} x^{6}\left(1-\frac{1}{x}\right)=\infty
\end{aligned}
$$

Sis bounded but 8 T is not bounded above so, not bounded $S \cap T \subseteq S \Rightarrow S \cap T$ is bounded

$$
S \cap T=[\text { maroon }(\alpha,-1), \beta] \Rightarrow \text { closed } \& \text { bounded }
$$

* The preimage of closed set (open set) under a continuous function is closed (open).
$\frac{\text { JAM }}{2008}$ The set $U=\left\{x \in \mathbb{R}: \sin x=\frac{1}{2}\right\}$ is
(a) Open
(b) closed
co open and closed
(d) neither open nor closed.

Sod $\quad \sin x=\frac{1}{2} \Rightarrow \sin x=\sin \frac{\pi}{6}$

$$
\begin{aligned}
& 2 \Rightarrow \sin x=n \pi^{\frac{6}{6}}(\\
& u=\left\{n \pi+(-1)^{n} \frac{\pi}{6}: n \in \mathbb{Z}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore u^{\prime}=\phi \\
& \Rightarrow u^{\prime} \leq u \\
& (\alpha-\varepsilon, \alpha+\varepsilon) \neq u \\
& \Rightarrow \alpha \text { is not intruise pt. } \\
& \Rightarrow U \text { is closed } \\
& \rightarrow \text { uss not pen. } \\
& \frac{\text { JAM }}{201} \text { Let } E=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}, F=\left\{\frac{1}{1-x}: 0 \leq x<1\right\} \text {. Then }
\end{aligned}
$$

Concave $f(x)<0$ ie. $\frac{d}{d x} f^{\prime}<0 \quad \square$ derivative decreasing Classtime Page Ho. 87 Convex $f^{\prime \prime}(x)>0$ ic. $f\left(x f^{\prime}>0\right.$ (deranotion ihturdaing)
(1) Eand F both are closed
8) E is closed but F is not closed.
(8) F is cloud bitt is not classed
(4). neither Enow F is closed.

30 en $\quad f(x)=\frac{x}{x+1} ; x>0 \Longrightarrow$

$$
f^{\prime}(x)=\frac{x+1-x}{(x+1)^{2}}=\frac{1}{(x+1)^{2}}>0 \Rightarrow \text { funk is always strictly inovaring }
$$

It passes through originate $x=0$

$$
\begin{aligned}
f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & <0 \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x}{x+1}=\sin \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+1 / x}=1
\end{aligned}
$$

$\therefore 1$ is the only limit point Show $I \in E^{\prime}$, analytically. LEE but $1 \& E \Rightarrow E$ is not closed.

$$
\begin{aligned}
& g(x)=\frac{1}{1-x} \quad g^{\prime}(0)=1 \\
& g(0)=1 \\
& g^{\prime}(x)=\frac{1}{(1-x)^{2}}>g^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} y=1 \\
& F=[1, \infty \infty) \\
& \text { Check } F^{\prime}=[1, \infty) \leqslant F \Rightarrow F \text { is closed }
\end{aligned}
$$

101916
JAM $\operatorname{Let} A=\left\{\frac{2}{1+x}: x \in(-1,1)\right\}$. Then the derived set of A is?
Sol: $y=\frac{2}{1+x}$

$$
\frac{d y}{d x}=-\frac{2}{(1+x)^{2}}<0
$$

$$
\text { graph of } y=\frac{2}{1+x}
$$

$$
A=(1, \infty) \text { as } x \in(-1,1)
$$

If $x \in(-1,1]$, then $A=[1, \infty)$ and if $x \in[-1,1]$, then question is not valid as -1 \& domain.

$$
A^{\prime}=[1, \infty)
$$

JAM $\operatorname{let} y=\left\{\frac{x}{1+|x|}: x \in \mathbb{R}\right\}$. Then $y^{\prime}=$?
So ln:

$$
\begin{aligned}
& y=\frac{x}{1+|x|}=\left\{\begin{array}{l}
\frac{x}{1+x} ; x \geqslant 0 \\
\frac{x}{1-x} ; x<0
\end{array}\right. \\
& \text { odd fence" } y=\frac{x}{x+1} \quad, x \geqslant 0 \Rightarrow \frac{d y}{d x}=\frac{1}{(x+1)^{2}}>\left.0 \quad \& \quad \frac{d y}{d x}\right|_{x=0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} y}{d x}=\frac{-2}{(x+1)^{3}}<0 \\
& \lim _{x \rightarrow \infty} \frac{x}{(x+1)} x=\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x}+1} \\
& =\frac{1}{0+1}=1 \\
& \text { Now, } y=\frac{x}{1-x}>0 \\
& \frac{d y}{d x}=\frac{1}{(1-x)^{2}}>0 \\
& \frac{d^{2} y}{d x^{2}}=\frac{-(-2)}{(1-x)^{3}}>0 \\
& \text { S.S. of } y \nless-1 \\
& \lim _{x \rightarrow-\infty} \frac{x}{1-x}=0 \\
& y=(-1,1) \Rightarrow y^{\prime}=[-1,1]
\end{aligned}
$$

$$
y=-1
$$

JAM Let A be an infinite sebset of \mathbb{R} such that $A \cap Q=\phi$. Then
(a) A must have a limit point in Q
(b) A must have a limit point in $\mathbb{R} \mid \mathbb{Q}$
(c) A is not closed
(d) $\mathbb{R} \backslash A$ must have a limit point in 2 (not only for 2 but fifo any ne

Sol: $A \subseteq \mathbb{Q}^{c}(\because A \cap Q=\phi) \Rightarrow \mathbb{R}|A \supseteq \mathbb{R}| Q^{C}=2$

$$
A^{1}=\phi \Rightarrow A \text { is closed }
$$

Let $A=\{\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots\}=\{\sqrt{p}:$ pis prime $\}$ has no limit point.
So, $2 \in \mathbb{R} \mid A$

$$
\Rightarrow 2^{\prime} \subseteq(\mathbb{R} \mid A)^{\prime} \Rightarrow \mathbb{R} \subseteq(\mathbb{R} \mid A)^{\prime} \Rightarrow \mathbb{R}=(\mathbb{R} \mid A)^{\prime}
$$

* So, every real number is its limit point.
* $A \subseteq \mathbb{R}$, collect all the interior points of A ${ }^{4} \alpha$ is an interior point if 7 some
ε-nohood $V_{c}(\alpha)$ of α such that $V_{\varepsilon}(\alpha) C A$

Is it possible that an interior point α of A down't belong to A ?

$$
\because V_{C}(\alpha) \subseteq A
$$

(A) $A^{\circ} \in A, A^{0} \rightarrow$ Set of interior points of α

* Result: A^{0} is open.

Prov $\angle C B=A^{\circ}$.
Let $\alpha \in B \quad \Rightarrow / \alpha \in B^{6}$
IS: $\alpha \in B^{\circ}$
$\alpha \in B \Rightarrow \alpha \in A^{\circ} \Rightarrow \alpha$ is an interior point of A.
$\Rightarrow \operatorname{Fan} \varepsilon>0$ set $(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq A$
Claim: $(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq B$
Let $y \in(\alpha-\varepsilon, \alpha+\varepsilon)$
TaRe $\varepsilon^{\prime}=\min \{y-(\alpha-\varepsilon), y-(\alpha+\varepsilon)\}$
Then $\left(y-\varepsilon^{\prime}, y+\varepsilon^{\prime}\right) \subseteq(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq A$
$\Rightarrow y \in A^{\circ}$ lie. $y \in B$
$\therefore(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq \underset{\alpha \in B^{\circ}}{B} \Rightarrow$ is open i.e. A° is open

$A^{0} \cup\{\gamma\} \rightarrow$ Notopen
(*) Result: A^{0} is the largest open set in A.
proof $A^{\circ} \subseteq A$ and A° is open \rightarrow Done.
S : open set in A
Claim: $S \subseteq A^{\circ}$
Let $\alpha \in S \Rightarrow 7 \varepsilon>0$ sit. $(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq S$
Consequently, $(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq A(: S \subseteq A)$
$\Rightarrow \alpha \in A^{0}$
(2) A is open $\Leftrightarrow A^{\circ}=A \quad\left(\because A^{\circ}\right.$ is the largest open set in $\left.A\right)$ $\left(A^{\circ}\right)^{\circ}=A^{\circ}$, since A° is open
$\frac{J A M}{2015}$ Ret $A \subset \mathbb{R}, A \neq \phi$ and $I(A)$ be the collection of tall interiove
points of A. Then I(A) cam be
Yas emply
(6) singutan

solm α, If A is fincit, then $I(A)=A^{\circ}=\beta$
 $\mid(x-\varepsilon,(x+8)|=|R|=C \rightarrow$ wronurtadidy infiovite?
So, neuther (b) , con nor (d).

* $1 . A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
 prs. which arx in whd
\Rightarrow A ts not geren, $5, A^{2}=8$
(2) $B=\left\{\frac{1}{2}: x \in \mathbb{R}^{*}\right\}$

$$
\frac{1}{(-\infty, 0) \cup(0, \infty) \text { is open } a s}
$$ Union Q्वि open set is opk

$$
\begin{aligned}
& a \in(-\infty, 0) \\
& \text { Set } \varepsilon=|\alpha| \text { i } \\
& (\alpha-|\alpha|, \alpha+|\alpha|) \in(-\infty, 0) \mid \\
& \text { So, } B \text { is open } \Rightarrow B^{\circ}=B
\end{aligned}
$$

- Closurer Point of a lot: $A \subset R$

Clowne of $A-\bar{A}=A \cup A^{\prime}$
element of \bar{A}. Cootwre pointe of A or acthewnt point Duthe an ilement of A or a linit point of A
(*) $A \subseteq A$
Q-Show that A^{\prime} is cloud.
sern het $B=A^{\prime}$
Suppocel $\alpha \in B^{B}$
T.S: $\alpha \in B$

Kat, if powille $\alpha \notin B$ be $\alpha \notin A^{\prime}$
$x \in y$
$\alpha \in x \Rightarrow a \in Y$ or $\alpha \notin y \Rightarrow \alpha \xi x$
$\Rightarrow \alpha$ is not a limit point of A.
There exists an $\varepsilon_{0}>0$ sit. $\left(\alpha-\varepsilon_{0} \alpha+\varepsilon_{8}\right.$ tasso points of A, other than α - $*$
At $\alpha \in B^{h}$, so $\left(\alpha-\varepsilon_{0}, \alpha+\varepsilon_{0}\right)$ has an element, say β of B, where os s

$$
\begin{aligned}
& \alpha d \varepsilon^{\prime}=\min _{\beta \in B}\{|\beta-\alpha|,|\beta-(\alpha+\varepsilon)|,|\beta-(\alpha-\varepsilon)|\} \frac{1}{\alpha-\varepsilon \quad \alpha \beta \alpha+\varepsilon} \\
& \beta \in B \text {, } \ddagger \in A
\end{aligned}
$$

Le., $\beta \in A^{\prime} \Rightarrow\left(\beta-\varepsilon^{\prime}, \beta+\varepsilon^{\prime}\right)$ entrains a point of A other than β that point of $A \neq \alpha$

* $\Rightarrow \Leftarrow$

So, our assumption is uriong.
$11 / 916$

- A^{\prime} is closed and $\bar{A}=A \cup A^{\prime}$.

Show that \bar{A} is closed.
Proof:
$\bar{A}=A \cup B$, where $B=A^{\prime}$
T. S: $(\bar{A})^{\prime} \subseteq \bar{A}$
\times Claim: $(B)^{\prime}=(A \cup B)^{\prime}$
$B \subseteq A \cup B \Rightarrow B^{\prime} \subseteq(A \cup B)^{\prime} \quad\left(\because x \subseteq y \Rightarrow x^{\prime} \subseteq y^{\prime}\right)$
We show that $B(A \cup B)^{\prime} \subseteq B^{\prime}$
TS: $\alpha \notin B^{\prime} \Rightarrow \alpha \notin(A \cup B)^{\prime}$
suppose $\alpha \notin B^{\prime}$ - (1)
Let if porcille, $\alpha \in(A \cup B)^{\prime}$
(1) \Rightarrow an $\varepsilon_{0}>0 \mathcal{F}\left(\alpha-\varepsilon_{0}, \alpha+\varepsilon_{0}\right)$ contains no element of B, other than α - *
Since $\alpha \in(A \cup B)^{\prime}$, so $\left(\alpha-\varepsilon_{0}, \alpha+\varepsilon_{0}\right)$ contains an element, say β of $A \cup B$, where $\alpha \neq \beta$
$\beta \in A \cup B \Rightarrow \beta \in A$ or $\beta \in B$

$$
\frac{1}{\alpha-\varepsilon_{0}} \quad 11
$$

Fum $*, \beta \notin B$
As B is closed, $B^{\prime} \subseteq B \Rightarrow \beta^{\prime}$
Claim: $(A \cup B)^{\prime} \subseteq B$, where $B=A^{\prime}$
To ge Lex [$\alpha \alpha \in(A \cup B)^{\prime} \Rightarrow \alpha \in B$
Let $\alpha \notin B$. We show that $\alpha \notin(A \cup B)^{1}$

Notation of Open set: O or Gt
a-Sum-Unuon
2 closed Set: F
8- Intersuctrel snap Page Ho. 93
F_{σ} : union of closed sets \& G_{s}-Intersection of open Saves
Let if possible, $\alpha \in(A \cup B)^{\prime}$
$\alpha \notin B=A^{\prime} \Rightarrow 7$ an $\varepsilon_{0} \operatorname{sit}\left(\alpha-\varepsilon_{0}, \alpha+\varepsilon_{0}\right)$ contains no clement of a fin the tho spruce $\alpha \in(A \cup B)$, if has in dement B of Aus other than 2 , We are sure $\beta \notin A, s o \beta \in B=A^{\prime}$
$\operatorname{Let} \varepsilon^{\prime}=\min \left\{|\alpha-\beta|,\left|\beta-\left(\alpha-\varepsilon_{0}\right)\right|,\left|\beta-\left(\alpha+\varepsilon_{0}\right)\right|\right\}$
d) A other thana

So, $\left(\beta-\varepsilon^{\prime}, \beta+\varepsilon^{\prime}\right)$ has an element of A, different from β and tarim elimem
** \bar{A} is close. And $\left(\beta-\varepsilon^{\prime} \beta+\varepsilon^{\prime}\right) \subseteq\left(\alpha-\varepsilon_{0}, \alpha+\varepsilon_{0}\right), 30$, it has of $A \cup B$ other thana an element of A, other than β and also other than $\alpha-*(A)$
Q- Find \bar{A}, if
(1) $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
(2) $A=2$
(3) $A=\left\{\frac{1}{3}: n \in \mathbb{N}\right\}$

Sol: $1\left(A^{\prime}=\{0\}\right.$

$$
\bar{A}=A \cup A^{\prime}=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}
$$

(2)

$$
\begin{aligned}
& A^{\prime}=\mathbb{R} \\
& \bar{A}=A \cup A^{\prime}=2 \cup \mathbb{R}=\mathbb{R}
\end{aligned}
$$

$$
\text { (3) } A^{\prime}=\{0\}
$$

$$
\bar{A}=A \cup\{O\}
$$

24. Reset: \bar{A} is the smallest dosed set containing A

Proof: B : closed contains A
(Pg TlO^{20} IP: $A \subseteq B$

- A set A is called an F_{r}-set if A can be writtern as a countable union of closed sets
- A set A is called an G_{8}-set if A can be urittern as a countable intersection of open sets.

Q - show Q is an $F F$ set
San $Q=u_{x \in 2}\{x\}$
$\{x\}$ is $x \in 2$ ion chat set as lory finite set is closed and as 2 is countable, \therefore there are countable choice for $\{x\}$ $\therefore U\{x\}$ is countable union of closed set
$\mathbb{R}|\{1\} \cap \mathbb{R}|\{2\} \cap \mathbb{R}|\{3\}=\mathbb{R} \mathbb{Q}|\{1,2,3\}$
$\therefore Q$ is an F_{σ} - set.
Q- Show that $\mathbb{R} \mid Q$ is a G_{δ}-set.
Sol:

$$
\mathbb{R} \mid \mathbb{Q}=\cap_{\substack{x \in \mathbb{R} \\ \text { Countable intersection }}}
$$

$\mathbb{R}\{\{x\}$ is open as $\{x\}$ is dosed (\because complement of closed set is open)

Q- show $[a, b]$ is $a G_{g}$-set.
So ${ }^{n}:[a, b]=\frac{\bigcap_{\frac{n \in \mathbb{N}}{}}^{\text {Countable intersection }}\left(a-\frac{1}{n}, b+\frac{1}{n}\right)}{}(a)$
Q - show $[a, b)$ is $F_{\sigma}-$ set $o r G_{g}-$ set?
Son: $[a, b)=\bigcap_{n \in \mathbb{N}}\left(a \frac{-1}{n}, b-\frac{1}{n}\right) \Rightarrow[a, b)$ is G_{δ} - set $\rightarrow \mathbb{N} \rightarrow$ countable intersection

Ar). Compact sets (k): A set $k \subseteq \mathbb{R}$ is said to be compact if any sequence $\left(a_{n}\right)$ in k has a convergent subsequence $\left(a_{n_{k}}\right)$ which converges to a point in k.

$$
\left(a_{n_{k}}\right) \rightarrow l \in K .
$$

Q- Show $[a, b]$ is compact.
Sol: Let $(a$, be a sequence in $[a, b]$
By B.W. The, bounded sequence has a convergent subsequana $A_{s}\left(a_{n}\right)$ is bad.
$\Rightarrow\left(a_{n}\right)$ has a convergent subsequence $\left(a_{n_{k}}\right)$ (By B.W. The $)$ $\operatorname{Let}\left(a_{n_{k}}\right) \rightarrow \ell, a \leq a_{n_{k}} \leq b \Rightarrow a \leq l \leq b$
$\Rightarrow l \in[a, b]^{*}\left(\because a \in \bar{A}^{\prime} \Leftrightarrow 7 a\right.$ seq. $\left(a_{n}\right)$ in A st. $\left(a_{n}\right) \rightarrow a$, $\left.a_{n} * a\right)$
$\Rightarrow l \in[a, b] \quad(\because[a, b]$ is closed $]$
so, $[a, b]$ is compact.

Peyere - Mathematics in U.S. J. J-Syeverter
Q.E.D. \rightarrow Quot erat dementradum Casstume proge No. 95
(*) IS: \bar{A} is clould i.e. $(\bar{A})^{\prime} \subseteq \bar{A}$

$$
\text { Let } x \in(\bar{A})^{\prime} \text { i.e. } x \in(A \cup B)^{\prime} \text {, where } B=A^{\prime} \text {-(1) }
$$

heve $(A \cup B)^{\prime} \subseteq B$-(2)
Frem (1) 4 (2), $x \in B$ i.e. $x \in A^{\prime}-*$

$$
\bar{A}=\bar{A} \cup A^{\prime}-*
$$

Fugn $\otimes k \otimes, x \in \bar{A} \Rightarrow(\bar{A})^{\prime} \subseteq \bar{A}$
(0) Result: $\alpha \in \bar{A} \Leftrightarrow$ There exists a sefuence $\left(x_{n}\right)$ in $A \mathcal{F}\left(x_{n}\right) \rightarrow \alpha$ Pung): $\alpha(\Rightarrow)$ Let $\alpha \in \bar{A}$ i.e. $\alpha \in A^{\prime} \cup A^{\prime}$
$\Rightarrow \underbrace{\alpha \in A}_{\downarrow}$ or $\underbrace{\alpha \in A^{\prime}} \quad\left[\because \alpha \in A^{\prime} \Leftrightarrow\right.$ There exists a sequence $\begin{array}{ll}(\alpha, \alpha, \alpha,) \rightarrow \alpha & \text { outwork }{ }^{\pi} \\ \text { is done } & \left.x_{n}\right) \text { in } A \sim\left(x_{n}\right) \rightarrow \alpha, \text { where } \\ \text { in } \neq \alpha \forall n]\end{array}$
\Leftrightarrow suppose $\left(x_{n}\right)$ is a sequence in A s.t $\left(x_{n}\right) \rightarrow \alpha$ I.S: $\alpha \in \bar{A}$
T.S: Take any ε-nbhd, $v_{\varepsilon}(\alpha)$ of $\alpha,\{.0,(\alpha-\varepsilon, \alpha+\varepsilon) \cap A \neq \phi$, for each $\varepsilon>8$
As $\left(x_{n}\right) \rightarrow \alpha, \exists$ an $N \in \mathbb{N}$ s.t. $\left|x_{n}-\alpha\right|<\varepsilon \forall n \geqslant N$

$$
\text { i.e,, } x_{n} \in(\alpha-\varepsilon, \alpha+\varepsilon) \forall n \geqslant N
$$

$x_{n} \in A \forall n \in \mathbb{N}$

* If $\alpha \in A^{\prime}$, then each $8-n$ hood of a contains a point of A other than α.
(4) Result: $\alpha \in \AA \Leftrightarrow$ rach neighborhood of a contains a peint of A

Q- Show (1) $\overline{A \cup B}=\bar{A} \cup \bar{B}$
(2) $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime} x$
(3) $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$
(4) $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$
(5) $A^{\circ} \cup B^{\circ} \subseteq(A \cup B)^{\circ}$

* $\left.X \subseteq Y \Rightarrow X^{\prime} \subseteq Y^{\prime}\right] \Rightarrow X U X^{\prime} \subseteq Y \cup Y^{\prime}$ - i.e. $\bar{X} \nsubseteq \bar{Y}$
$\left.\begin{array}{rl}\text { Sof: (1) } A \subseteq A \cup B \Rightarrow \bar{A} \subseteq \overline{A \cup B} \\ & B \subseteq A \cup B \Rightarrow \bar{B} \subseteq \overline{A \cup B}\end{array}\right] \Rightarrow \bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$
We'll show $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$
Let $\alpha \notin \bar{A} \cup \bar{B} \Rightarrow \alpha \notin \bar{A} k \alpha \notin \bar{B}$

$A \subseteq \mathbb{R}$ open $\Leftrightarrow \mathbb{R} \backslash A$ is closed
$\mathbb{R}:$ open $\Rightarrow \mathbb{R} \mid \mathbb{R}$ is closed $\mathrm{r} \cdot \mathrm{e}$. ϕ is closed
$\phi \rightarrow$ empty set $\phi \rightarrow \mathrm{Fie}$
As $\alpha \notin \bar{A} \Rightarrow 7$ an $\varepsilon_{1}>0 \mathcal{F}\left(\alpha-\varepsilon_{1}, \alpha+\varepsilon_{1}\right)$ has no pt. of A
and $\alpha \notin \bar{B} \Rightarrow 7$ an $\varepsilon_{2}>0 \rightarrow\left(\alpha-\varepsilon_{2}, \alpha+\varepsilon_{2}\right)$ taos no pt of B.

$$
\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}
$$

$(\alpha-\varepsilon, \alpha+\varepsilon)$ has no point of $A \cup B$
$\Rightarrow \alpha \notin \overline{A \cup B}$
(2) $A \subseteq A \cup B \Rightarrow A^{\prime} \subseteq(A \cup B)^{\prime} \& B \subseteq A \cup B \Rightarrow B^{\prime} \subseteq(A \cup B)^{\prime} \Rightarrow A^{\prime} \cup B^{\prime} \subseteq(A \cup B)^{\prime}$

We'll show $(A \cup B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$
Let $\alpha \notin A^{\prime} \cup B^{\prime} \Rightarrow \alpha \notin A^{\prime} \& \alpha \notin B^{\prime}$
As $\alpha \not A^{\prime} \Rightarrow F$ an $\varepsilon_{1}>0 \mathcal{F}\left(\alpha-\varepsilon_{1}, \alpha+\varepsilon_{1}\right)$ has no pt of A $\& \alpha \notin B^{\prime} \Rightarrow F$ an $\varepsilon_{2}>0 F\left(\alpha-\varepsilon_{2}, \alpha+\varepsilon_{2}\right)$ has no pt. of B $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\} \Rightarrow\left(\alpha-\varepsilon, \alpha+\varepsilon\right.$ has no point of $A \cup B \Rightarrow \alpha \&(A \cup B)^{1}$
(3) Provide am example of A, B with $\overline{A \cap B} \notin \bar{A} \cap \bar{B}$ ie $\overline{A \cap B} \cong \bar{A} \cap \bar{B}$
[* A is closed $\Leftrightarrow \bar{A}=A\left(\because \bar{A}=A \cup A^{\prime} \& A(S A)\right]$
$\operatorname{Let} A=(1,2) \Rightarrow \bar{A}=[1,2]$

$$
B=(2,3) \Rightarrow \bar{B}=[2,3]
$$

$\bar{A} \cap \bar{B}=\{2\}$
$A \cap B=\phi \phi \Rightarrow \overline{A \cap B}=\bar{\phi}=\phi(\because \phi$ is closed $)$
$\therefore \overline{A \cap B} \neq \bar{A} \cap \bar{B}$
IS $\cdot \overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$

$$
\left.\begin{array}{l}
A \cap B \subseteq A \Rightarrow \overline{A \cap B} \subseteq \bar{A} \\
f A \cap B \subseteq B \Rightarrow \overline{A \cap B} \subseteq \bar{B}
\end{array}\right] \Rightarrow \overline{A \cap B} \subseteq \bar{A} \cap \bar{B}
$$

(4)

$$
\left.\begin{array}{l}
\text { I. } A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ} \\
A S X \subseteq Y \Rightarrow x^{\circ} \subseteq Y^{\circ}, S O, \\
A \cap B \subset A \Rightarrow(A \cap B)^{\circ} A \subseteq A^{\circ} \\
A \cap B \subseteq B \Rightarrow(A \cap B)^{\circ} \subseteq B^{\circ}
\end{array}\right] \Rightarrow(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}
$$

We show, $A^{\circ} \cap B^{\circ} \subseteq(A \cap B)^{\circ}$

$$
\alpha \in A^{\circ} \cap B^{\circ} \Rightarrow \alpha \in A^{\circ} \quad f \alpha \in B^{\circ}
$$

tx. GOAL: Find $\varepsilon>0$ st $(\alpha-\varepsilon, \alpha+\varepsilon) \leq A \cap B$ If $\alpha \in A^{0}$, then $\bar{\xi}>0$ sit. $\left(\alpha-\varepsilon_{1}, \alpha+\varepsilon_{1}\right) \subseteq A$

If $\alpha \in B^{0}$, then $\exists \varepsilon_{2}>0$ sit. $\left(\alpha-\varepsilon_{2}, \alpha+\varepsilon_{2}\right) \subseteq B$

$$
\begin{aligned}
& \varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right) \\
& (\alpha-\varepsilon, \alpha+\varepsilon) \subseteq A \cap B \\
& \Rightarrow \alpha \in(A \cap B)^{\circ} \Rightarrow A^{\circ} \cap B^{\circ} \subseteq(A \cap B)^{\circ}
\end{aligned}
$$

(2) Provide an example of $A \& B$ st. $\left(A^{\circ} \cup B^{\circ}\right) \subsetneq(A \cup B)^{\circ}$

$$
\begin{aligned}
& \text { Let } A=[1,2] \Rightarrow A^{\circ}=(1,2) \quad \& B=[2,3] \Rightarrow B^{\circ}=(2,3) \\
& A^{\circ} \cup B^{\circ}=(1,2) \cup(2,3) \\
& (A \cup B)=[1,3] \Rightarrow(A \cup B)^{\circ}=(1,3) \\
& \text { (early, } A^{\circ} \cup B^{\circ} \subsetneq(A \cup B)^{\circ} \text {, hence, } A^{\circ} \cup B^{\circ} \neq(A \cup B)^{\circ} \\
& \text { T.S: } A^{\circ} \cup B^{\circ} \subseteq(A \cup B)^{\circ} \\
& A \cup A \subseteq B \Rightarrow A^{\circ} \subseteq(A \cup B)^{\circ} \\
& \left.B \subseteq A \cup B \Rightarrow B^{\circ} \subseteq(A \cup B)^{\circ}\right] \Rightarrow\left(A^{\circ} \cup B^{\circ}\right) \subseteq(A \cup B)^{\circ}
\end{aligned}
$$

- $\mathbb{c}_{0}=\left[\frac{[0,1]}{0}\right.$

In ${ }^{2}$: Union of 2^{n} closed intervals rack interval with length $\frac{1}{3^{n}}$

$$
C=\prod_{n=0}^{\infty} C_{n} \rightarrow \text { Cantor set }
$$

$C \neq \varnothing^{n=0}$ as C contains at least the end points, which are of the form $\frac{m}{3^{n}}$
Is C countable? No.
Does C contain open intervals? No

Does C contain any irrational number? Yes
If C contains only end point, then $C \subseteq R(:$ end points are ratio
$\rightarrow C$ is countable, but this is wrong as C cosesn't contain only end ps
Total length removed $s=\frac{1}{3}+2 \cdot 1+4 \cdot \frac{1}{27}+\ldots$.

$$
\begin{aligned}
& =\frac{1}{3}+2 \cdot \frac{1}{3^{2}}+2^{2} \cdot \frac{2^{7}}{3^{3}}+2^{3} \cdot \frac{1}{3^{4}}+\ldots \\
& =\frac{1}{3}\left[1+\frac{2^{3}}{3}+\left(\frac{2}{3}\right)^{2} 7^{3}\left(\frac{2}{3}\right)^{3^{4}}+\ldots\right] \\
& +a^{3} r^{2}+\ldots
\end{aligned}
$$

$$
\left.r=\frac{2}{3}<1\left[a+a r+a r^{2}+\cdots, \frac{1}{3}, \frac{a}{r<1}\right)^{1+r}\right]^{\frac{2}{3}}
$$

$$
=\frac{1}{3}\left[\frac{1}{1-\frac{2}{3}}\right]=\frac{1}{3}\left[\frac{3}{1}\right]=1
$$

Total length $=1$

* Cantor set has length zero

So, Distinct members of C, distinct addresses.
Address of $\mathrm{O} \rightarrow\langle 0,0,0, \ldots\rangle$
Address of $1 \rightarrow\langle 1,1,1, \ldots\rangle$
Observe that addresses of end points are eventually
constant sequences. constant Sequences.

* \# of sequences with terms 0 or $1=$ \# of elements of C such sequences are uncountably many infect C in "number" $\therefore|c|=\stackrel{c}{c}$
Length of the cantor set is zero

$$
2^{N_{0}}=1 \mathbb{R}
$$

Cardinality of the Cantor set is that of \mathbb{R}.
As C is not countable, so, it has irrational numbers $C^{*} \neq 2$

$$
(a, b) \subseteq c ?
$$

$\frac{1^{\text {kit } \varepsilon>0}<\frac{1}{m_{0}}<\xi^{3}=\left(\text { By Arch. Prop. } 7 m_{0} \in \mathrm{~m}_{\text {sit. }} \quad 1\right.}{m_{0}}<\varepsilon$)
\rightarrow Length of intervals.

$$
(a, b) \subseteq C_{m_{0}} ? N_{0}
$$

has 2^{m}. intervals of length $1 / 3^{m o}$
And (a, b) has length greater than $\frac{1}{3^{m_{0}}}$ as $\varepsilon=|b-a|$

$$
\Rightarrow(a, b) \notin \bigcap_{n=0}^{\infty} C_{n}=C^{\prime}
$$

\therefore (has no open interval.

* No open interval is contained in the cantor set. $\alpha \in C$
Is α an interior point of C? No (Why?)
As if α is an interior point of $\overline{\bar{c}}$ then itstas $\alpha \varepsilon$ - n^{\prime} hood is contained in C but no ε-n'hood of cs is contained in C which is impossible.
$\Rightarrow N 0$ point of C is an interior port of $C, 1 . e, C^{\circ}=\varnothing$
$\therefore C$ is not open.
Is C closed?

$$
c=\bigcap_{n=1}^{\infty} C_{n}
$$

FINITE, are closed sets
C_{n} : union of 2^{n} closed intervals $\Rightarrow C_{n}$ is closed $\forall n \in \mathbb{N}$
C : intersection of closed sets $\Rightarrow C$ is closed
$C \subseteq[0,1] \Rightarrow C^{\prime} \subseteq[0,1](:[0,1]$ is closed set)
Let a be $[0,1], \alpha \notin C$

$$
\text { 1.e. } \alpha \notin \cap_{n \in N_{1}} C_{n}
$$

$\Rightarrow 7$ some $m_{0} \in \mathbb{N}$ st $\alpha \notin C_{m_{0}} \rightarrow$ union of $2^{m_{0}}$ closed intervals.

There exists an se $\mathbb{N} s t \cdot \frac{\Delta}{2 m_{0}}<\alpha<s+1$
Is $\alpha \in C^{\prime}$? No, as we get an $n^{m_{0}}$ hood of $\varepsilon 3_{s, t}^{m_{0}}$. it has no pt of Cotherthan

$$
\begin{aligned}
& \varepsilon:=\min \left\{\alpha-\frac{s}{3^{m_{0}}}=\alpha+\frac{s+1}{}-\alpha\right\} \\
& (\alpha-\varepsilon, \alpha+\varepsilon) \cap 3^{m_{0}}
\end{aligned}
$$

$\Rightarrow \alpha \notin \bar{c}=c u c^{\prime} \Rightarrow \alpha \notin c^{\prime} \Rightarrow$ If any $p t$. does t belong to c them it is not its limit point, so, c is closed.

Let $\alpha \in C$
Is $\alpha \in C^{\prime}$?

$$
\alpha \in C \rightarrow \alpha \dot{\in} C_{n} \Leftrightarrow \forall n \in \mathbb{N}
$$

In particular, $\alpha \in C_{m_{0}} \Rightarrow f$ some seN sit. $\frac{s}{3^{m_{0}}} \leq \alpha<\frac{\Delta+1}{3^{m_{0}}}$
$C \&\left[0\right.$ where $\left[\frac{1}{3^{m_{0}}}, \frac{\Delta+1}{3^{m_{0}}}\right] \subseteq C_{m_{0}}$

- He can find end points (pts of c) arbitrary dose to α. $s=\frac{1}{3^{m_{0}+s}}<\varepsilon$
(18) we can find $s_{0} \in \mathbb{N}$ st $\frac{1}{\text { so }}<\mathcal{E}$
$C_{S_{0}}$: length of intervals $\frac{1}{3^{5}} \beta^{S_{0}}$
$\alpha \in C \Rightarrow \alpha \in C_{i_{0}} \Rightarrow \alpha$ is in one of $2^{\text {bo }}$ closed intervals
Pickend p s β of that closed interval,$\alpha \neq 1$

$$
\begin{gathered}
|\alpha-\beta|<\frac{1}{2 \alpha_{0}}<\varepsilon \Rightarrow \beta \in(\alpha-\varepsilon, \alpha+\varepsilon) \\
\text { mum bi } \& c
\end{gathered}
$$

$(\lg -93)$

* Result: \bar{A} is the smallest dosed set containing A

Proof
$\frac{R e s u l t: ~}{\bar{A}}$ is the smallest closed
B: closed contains $A \Rightarrow A \subseteq B$
T.P: $\bar{A} \subseteq B$ i.e. $\alpha \notin B \Rightarrow \alpha \notin \bar{A}$

As B is closed $\Rightarrow B^{\prime} \subseteq B$ - (1)
Net $\alpha \notin B$
ISS: $\propto \notin \bar{A}$
Let if possible, $\alpha \in \bar{A}$ and $\bar{A} \xi=A \cup A^{\prime} \Rightarrow \alpha \in A$ or $\alpha \in A$
Case I If $\alpha \in A$, then $\alpha \in B(\because A \subset B) \nsim(: \alpha \notin B)$

$$
\text { so, } \alpha \notin A
$$

cast II ff $\alpha \in A^{\prime}$.

$$
A \subseteq B \Rightarrow A^{\prime} \subset B^{\prime}
$$

30, $\alpha \in B^{\prime} \subseteq B(B y(D) \Rightarrow \alpha \in B>(\because a \notin B)$
\therefore Our asoumption is lorong

$$
\begin{aligned}
& \alpha \notin \bar{A} \\
& \therefore \bar{A} \subseteq B .
\end{aligned}
$$

(A) Result: $\alpha \in \bar{A} \Leftrightarrow$ Each n'hood of α contains a point of A.

Proof: $(\Rightarrow) \alpha \in \bar{A}$
$\Rightarrow 7$ sequence $\left(x_{n}\right)$ in A st. $\left(x_{n}\right) \rightarrow \alpha$
Let $\varepsilon>0$ be gavin.

$$
\left|x_{n}-\alpha\right|<\varepsilon \forall n \geqslant N \Rightarrow x_{n} \in(\alpha-\varepsilon, \alpha+\varepsilon) \forall n \geqslant N
$$

As $\left(x_{n}\right) \in A$ and $\varepsilon>0$ is arbitrary, \therefore each nbhood of α contains a point of A.
(\Leftrightarrow) Lit $\varepsilon>0$ be gwen and each n hood g a contains a point of A $\Rightarrow(\alpha-\varepsilon, \alpha+\varepsilon)$ contains a point of A, say, β
$\left.\begin{array}{l}\text { If } \beta=\alpha \text {, then } \alpha \in A \\ \text { \& If } \beta \neq \alpha \text {, then } \alpha \in A^{\prime}\end{array}\right] \Rightarrow \alpha \in A \cup A^{\prime}=\bar{A}$
$\therefore \alpha \in \bar{A}$

Real Analysis Test

Date: Sept 10, 2016
Topics: Countability of sets, Bounded sets, Sequences

```
"It does not matter how much knowledge we have, but it
matters whether how much eager are we to gain that."-Parveen Chhikara
```

1. a, 2. b, 3. d, 4. a, 5. b, 6. c, 7. c, 8. c, 9. b, 10. b, 11.a,c, 12. a, b, d, 13. a, c, 14. b, d, 15. a, b, c, 16. b, c, 17. -03849, 18. 0.5, 19. 2.71, 20. 0
2. If in this test, you fail to do a lot of questions, then
(a) you should think that the test is tough, and you can not do anything.
(b) you lose your confidence.
(c) you think that you are very weak in studies.
(d) you do not lose your confidence, and try to give your best in the test.

Single-Correct Questions

1. Suppose that $\left(x_{n}\right)$ is a convergent sequence and $\left(y_{n}\right)$ is such that for any $\varepsilon>0$, there exists $M \in \mathbf{N}$ such that $\left|x_{n}-y_{n}\right|<\varepsilon$ for all $n \geq M$. Then $\left(y_{n}\right)$ is
(a) convergent.
(b) bounded but not convergent.
(c) bounded above but unbounded below.
(d) bounded below but unbounded above.
2.The set of the roots of all polynomial functions of degree 3, and with rational coefficients is
(a) uncountable.
(b) countable infinite.
(c) finite set with cardinality greater than 3.
(d) of cardinality 3.
2. If $f: A \rightarrow B$ and the range of f is uncountable, then the domain of the function f
(a) may be countable.
(b) is countable.
(c) may be finite.
(d) is uncountable.
3. Suppose that f is continuous and that the sequence

$$
x, f(x), f(f(x)), f(f(f(x))), \ldots
$$

converges to l. Then
(a) $f(l)=l$.
(b) $f(l)=l^{2}$.
(c) $f(l)=\frac{1}{l}$.
(d) $f(l)$ does NOT exist.
5. The sequence $\left\{\frac{2 n+1}{2 n}: n \in \mathbf{N}\right\}$ is
(a) unbounded above.
(b) bounded.
(c) divergent
(d) unbounded below.
6. If u is an upper bound of a set A of real numbers and $u \in A$, then u is
(a) an infimum of A.
(b) both infimum and supremum of A.
(c) a supremum of A.
(d) neither infimum nor supremum of A.
7. Point out the WRONG statement out of the following.
(a) The countable union of countable sets is countable.
(b) If A and B are countable, then $A \times B$ is countable.
(c) The uncountable union of finite sets is countable.
(d) Every infinite set is equivalent to one of its proper subsets.
8. Given the sequence $\left\langle\frac{n}{n+1}\right\rangle$ and an arbitrary small positive number ε. Then the value of a positive integer m such that $\left|\frac{n}{n+1}-1\right|<\varepsilon$ whenever $n \geq m$ must satisfy
(a) $m \leq \frac{1}{\varepsilon}-1$.
(b) $m<\frac{1}{\varepsilon}-1$.
(c) $m>\frac{1}{\varepsilon}-1$.
(d) $m \geq \frac{1}{\varepsilon}-1$.
9. Let $\lim \frac{s_{n}-1}{s_{n}+1}=0$, then $\lim s_{n}$ equals
(a) 0 .
(b) 1 .
(c) -1 .
(d) 2 .
10. Which among the following is CORRECT?
(a) If a sequence of positive real numbers is not bounded, then the sequence diverges to infinity.
(b) If a sequence converges, then it is bounded.
(c) If a sequence is monontonically increasing, and bounded above, then it may fail to be convergent.
(d) Every bounded sequence is convergent.

Multi-Correct Questions

11. Which of the following statements is(are) TRUE?
(a) An infinite set contains a countable subset.
(b) If A is an infinite set and $x \in A$, then A and $A \backslash\{x\}$ are not equivalent.
(c) The intervals $(0,1)$ and $[0,1]$ are equivalent.
(d) The set of all ordered pairs of integers is not countable.
12. If $L \in \mathbf{R}, M \in \mathbf{R}$ and $L \leq M+\varepsilon$ for every $\varepsilon>0$, then which of the following MAY be true?
(a) $L<M$.
(b) $L=M$.
(c) $L>M$.
(d) $L \leq M$.
13. If $\left(s_{n}\right)$ is a sequence of real numbers and if, for every $\varepsilon>0$,

$$
\left|s_{n}-L\right|<\varepsilon \text { for every } n \geq N
$$

where N does not depend on ε, then
(a) finitely many terms are not equal to L.
(b) all but finitely many terms are equal to L.
(c) the terms which are equal to L are infinitely many.
(d) the terms which are equal to L are finitely many.
14. Which of the following statements is (are) TRUE for a sequence $\left(s_{n}\right)$?
(a) $\left(\left|s_{n}\right|\right)$ converges to $a \Leftrightarrow\left(s_{n}\right)$ converges to a.
(b) $\left(s_{n}\right)$ converges to $a \Leftrightarrow\left(\left|s_{n}\right|\right)$ converges to $|a|$.
(c) $\left(\left|s_{n}\right|\right)$ converges to $a \Rightarrow\left(s_{n}\right)$ converges to a.
(d) $\left(\left|s_{n}\right|\right)$ converges to $0 \Leftrightarrow\left(s_{n}\right)$ converges to 0 .
15. Let $s_{1}>s_{2}$, and let $s_{n+1}=\frac{1}{2}\left(s_{n}+s_{n-1}\right),(n \geq 2)$. Then
(a) $s_{1}, s_{3}, s_{5}, \ldots$ is nonincreasing.
(b) $s_{2}, s_{4}, s_{6}, \ldots$ is nondecreasing.
(c) $\left(s_{n}\right)_{n=1}^{\infty}$ is a convergent sequence.
(d) $\left(s_{n}\right)_{n=1}^{\infty}$ is a divergent sequence.
16. If $\left\{s_{n}\right\}$ is a Cauchy sequence of real numbers which has a subsequence converging to L, then
(a) $\left\{s_{n}\right\}$ may not be convergent.
(b) $\left\{s_{n}\right\} \rightarrow L$.
(c) $\left\{s_{n}\right\}$ is bounded.
(d) $\left\{s_{n}\right\}$ is unbounded.

Numerical-Answer Type Questions

17. The infimum of the set $\left\{x^{3}-6 x^{2}+11 x-6: x \geq 1\right\}$ upto three decimal points is \qquad
18. $\lim _{n \rightarrow \infty} \frac{2 n^{3}+5 n}{4 n^{3}+n^{2}}=$ \qquad
19. The limit superior of the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is \qquad
20. If $s_{n}=\frac{5^{n}}{n!}$, then $\lim _{n \rightarrow \infty} s_{n}=$

Best Wishes from Parveen Chhikara...

1. $\left(x_{n}\right)$: convergent seq. $\Rightarrow\left(x_{n}\right) \rightarrow l$ leven $\varepsilon>0, \exists M \in \mathbb{N}$ s.t. $\left|x_{n}-y_{n}\right|<\varepsilon \quad \forall n \geqslant M$ Claim: $\left(y_{n}\right) \rightarrow l$ $\operatorname{As}\left(x_{n}\right) \rightarrow l, \varepsilon^{\varepsilon}>0$ given $\exists N \in \mathbb{N} \rightarrow\left|x_{n}-l\right|<\varepsilon \nleftarrow n \geqslant N$

$$
=x_{n} \in(l-\varepsilon, l+\varepsilon)
$$

$$
\left|x_{N}-y_{N}\right|<\varepsilon^{\prime \prime}
$$

So, $\left(y_{n}\right)$ is gt. \& hence bounded

2. $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}, a_{0,}, a_{1}, a_{2}, a_{3} \in d$
$N_{0} \times N_{0} \times \stackrel{\downarrow}{N_{0}} \times \stackrel{\downarrow}{N_{0}}=N_{0}^{4}=N_{0} \Rightarrow$ countably manypolyns. $\Rightarrow N_{0}$ polys \& each has at most 3 roots
*

$$
\begin{aligned}
& N_{0}{ }^{k}=N_{0}, \\
& K N_{0}=N_{0}, K<\infty \\
& k<\infty
\end{aligned}
$$

$$
\text { Roots }=\frac{3+3+\ldots}{3 \cdot N_{0}=N_{0}}
$$

3. $f A \longrightarrow B, R(f):$ uncountable

Let, ifposilify, $A=\left\{a_{1}, a_{2}, \ldots.\right\}$ be countable
$R(f)=\left\{f\left(a_{k}\right): K \in \mathbb{N}\right\} \Rightarrow \mathbb{R}(f) \mid \leq N_{0}$ ref ere singatenset
$-\operatorname{R}$ (fy is smallest when f is constant fun \hat{n} \& max. When of is one-to-one, then $|R(f)|=|A|=x_{0} \rightarrow \max$ size of $R(f$ $\Rightarrow R(f)$ is countable *
So, A is uncountable.

* If f is a function, which is continuous at $x=a$ and $\left(x_{n}\right) \rightarrow a$, then $f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$
"Continuous functions ${ }^{n \rightarrow \infty}$ Commute ${ }^{n \rightarrow \infty}$ with limits"

4. $x, f(x), f(f(x)), f(f(f(x)))$,
$x, f^{\prime}(x), f^{2}(x), f^{3}(x)$,
$\left.\Rightarrow \quad f^{n}(x)\right) \rightarrow l$ (4 goring $1^{\text {st }}$ trim (.e. x)
$\left.\Rightarrow \quad f f^{(n-1)}(x)\right) \longrightarrow l$
fie. $\lim f^{n}(x)=l \quad \& \quad \lim f\left(f^{n-1}(x)\right)=l$
$l\left(\lim f^{n-1}(x)\right)=l(\because \rho$ is continuous)
$\Rightarrow f\left(\lim f^{n-1}(x)\right)=l(\because f$ is continuous)
(2) If $\lim x_{n}=l$, then $\lim x_{n-1}=l$
$\Rightarrow f(l)=l$

* $\lim _{x \rightarrow 2}[x] \neq\left[\lim _{x \rightarrow 2} x\right] \quad$ b/c $\frac{[]}{\text { is not continuous at } x=2}$ no nt. at integer pts ardcont.
doesn't exist 2

$$
\lim _{x \rightarrow \pi}[x]=\left[\lim _{x \rightarrow \pi} x\right] \text { ? Yes, }[] \text { is continuous @ } \pi
$$

5. $\left[\frac{2 n+1}{2 n}\right\}$ is get., so, it is bounded
6. U: upper bound of A \& $u \in A$ If $s<U$, then can s be an $U \cdot B$. of A ?

No, so: U is sup. (A)
If A is singleton, then (B) is also true.
$7(b) A, B$: countable, so, $A=\left\{a_{1}, a_{2}, \ldots\right\} \& B=\left\{b_{1}, b_{2}, \ldots\right\}$

$$
A \times B=\left\{\begin{array}{l}
\left.\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}\right), b_{3}\right), \ldots \\
\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right), \ldots \\
\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots \\
\vdots
\end{array}\right.
$$

$\mathbb{N} \rightarrow A \times B$ is one-to-one correspondence, So, $A \times$ Bis countable If, A, B are countable, then $A \times B$ is ale countable.

* If $A_{1}, A_{2}, \ldots, A_{n}$ are finitely many countable sets, then there cartesian product $\frac{A_{1} \times A_{2} \times \ldots \times A_{n} \text { is also countable }}{\prod_{i=1}^{n} A_{i}^{i}}$
* $A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots: \frac{\text { Infinitely }}{\text { countably }}$ many sets \& , where $\left|A_{i}\right|=2 \quad$ countably

$$
\begin{aligned}
& A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n} \times \ldots=\left\{\left(\begin{array}{c}
\left.\left.a, a_{2}, \ldots, a_{n}, \ldots\right): a_{i} \in A_{i}\right\} \\
2 v_{0} v^{2} w^{2}
\end{array}\right.\right. \\
& \left|\prod_{i=\mathbb{N}} A_{i}\right|=2^{T_{0}}=c
\end{aligned}
$$

\rightarrow If $A_{1}, A_{2}, \ldots, A_{n}$, ... are countable sets, then $\prod_{i \in N} A_{i}$ is uncountable, sro,

* The cartesian product of countable number of countable sets is uncountable.
(a) Countable union means union of countable number of sets \uparrow Countable cartesian product \rightarrow cartesian product of countable no. 8 sets is not countable

10) Uncountable union of finite sets is not countable.

$$
{\underset{x}{x} \in \mathbb{R}}^{\{x\}}=\mathbb{R} \rightarrow \text { not countable }
$$

uncountable union of finite sots
(d) A : infinite set Pick an llement, say $a_{\text {, }}$, from A,

A $\mid\left\{a_{4}\right\} \rightarrow$ is it finite? No
Pick an element, say a_{2} from $A \mid\left\{a_{1}\right\}$, observe $a_{2} \neq a_{1}$
Al $\left\{a_{1}, a_{2}\right\} \rightarrow$ is it finite? No
Pick an element, say a_{3} from, $A\left\{a_{1}, a_{2}\right\}$, Observe $a_{3} \neq a_{2} \neq a$ A $\backslash\left\{a_{1}, a_{2}, a_{3}\right\}$ is also not finite
$\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \subseteq A$ and is countable.

* Result: An infinite set has a countable infinite subset.
* A: infinite set (countable or uncountable) A has a countable infinite set, say $B, B=\left\{\frac{b_{1}}{2}, b_{2}, b_{3}, \ldots\right\}$

$f: A \rightarrow A \mid\{x\}$ defined by $f(a)= \begin{cases}b_{n+1} & ; a=b_{n} \\ a ; & ; a \neq b_{n} \text { ie. } a \notin B\end{cases}$
is a bijection

$$
\text { so, }|A|=|A|\{x\}|\quad, \operatorname{them} \backslash B|\{x\} \mid=99
$$

If B is finite, let $|B|=100$, then then at least elements have same image, then f is not a bijection.

$$
\rightarrow A \sim A \mid\{x\}
$$

${ }^{66}$ Removing finitely many dements from an infinite sit doein't alter its cardinality"
11. (c) $(0,1)=[0,1] \mid\{0,1\} \Rightarrow(0,1) \sim[0,1]$
(d) $\mathbb{Z} \times \mathbb{Z} \rightarrow$ Cartesian product of 2 Countable sets is countilt
(b) Proved above.
8. $\left(\frac{n}{n+1}\right) \rightarrow 1$

$$
\text { Helen: } \subset>0, \exists \text { an } N \in \mathbb{F}
$$

$$
\begin{aligned}
& \left|\frac{n}{n+1}-1\right|<\varepsilon \forall n \geqslant N \quad \text { i.e. } \frac{1}{h+1}<\varepsilon \forall n \geqslant N \\
& \text { i.e. } n>\frac{1}{c}-1
\end{aligned}
$$

So, choose ${ }^{\varepsilon} N>\frac{1}{\varepsilon}-1$
If N : any integer $>\frac{1}{\varepsilon}-1$ then $n \geqslant N \Rightarrow n>\frac{1}{\varepsilon}-1$
9. Use Ageleraic Limit Theorem.
$10(a)(1,2,1,3,1,4, \ldots) \rightarrow$ oscillating finitely not diverges to ∞
(d) $(1,1,1,-1, \ldots) \rightarrow$ Bounded but not convergent.
12. Given $\varepsilon>0$

$$
L \leq M+\varepsilon \Rightarrow L-M \leq \varepsilon
$$

Can $L-M>0$? No
Let it be, choose $\varepsilon=\frac{L-M}{2}$
Then from $\otimes L-M \leq \frac{L-M^{2}}{2} \Rightarrow$
So, $L \leq M$
13. $\left(s_{n}\right) \nleftarrow l$

If N doesn't depend on ε, then the sequence is eventually constant sequence.

* If for a convergent sequence, if N does NOT depend on $\varepsilon>0$, then the sequence must be eventually constant.
\# of terms that are not equal to $l \leq N-1$
N-I may be zero, then all terms are equal to l then the seq is Constant sequence.
14.a) $\left(\left|s_{n}\right|\right) \rightarrow a \geqslant\left(s_{n}\right) \rightarrow a$, e.g. $s_{n}=(1,-1,1,-1, \ldots)$
(b) same as above.
(a) $\left(\left|\Delta_{n}\right|\right) \rightarrow 0 \Leftrightarrow\left(s_{n}\right) \rightarrow 0$
$\left(s_{n}\right) \rightarrow a \Rightarrow\left(s_{n} \mid\right) \rightarrow|a|$, but converse is not true.

We prove $\left(\left|s_{n}\right|\right) \longrightarrow 0 \Rightarrow\left(s_{n}\right) \rightarrow 0$
given: $\varepsilon>0$
GOAL: $\left|s_{n}-0\right|<\varepsilon$ ic. $\left|s_{n}\right|<\varepsilon$ ce. $\left|\left|s_{n}\right|<\varepsilon\right.$ ice. $|\left|s_{n}\right|-0 \mid<\varepsilon$ which is true.
15.

$$
\begin{aligned}
& \begin{array}{r}
\ldots<s_{5}<s_{3}<s_{1} \& s_{2}<s_{4}<s_{6}<\ldots . \text {. Monotone } \\
\text { Monotone dec. Montane inc. \& Bounded } \\
\text { dor }
\end{array} \\
& \text { Monotone dec. }
\end{aligned}
$$

$\therefore\left(s_{2 n}\right)$ converges $f\left(s_{2 n+1}\right)$ Converges
Suppose $\left(s_{2 n}\right) \rightarrow l_{1} \&\left(s_{2 n+1}\right) \xrightarrow{l_{2}}$
Let, if possible, $l_{1} \neq l_{2}$

$$
\begin{aligned}
s_{2 n+1} & =\frac{1}{2}\left(s_{n}+s_{n-1}\right) \\
\Rightarrow s_{2 m+1} & =\frac{1}{2}\left(s_{2 m}+s_{2 m-1}\right)
\end{aligned}
$$

$\Rightarrow \lim s_{2 m+1}=\frac{1}{2}\left[\lim s_{2 m}+\lim s_{2 m-1}\right]$
$\Rightarrow \quad l_{2}=\frac{l^{2}}{2}\left(l_{21}+l_{2}\right) \quad \stackrel{ }{\Rightarrow} \Leftarrow$ So, our assumption is wrong.
Hence, $l_{1}=l_{2} \Rightarrow$ It is a convergent sequence
18/9 116 Result: A set K is compact. $\Leftrightarrow K$ is closed \& bounded
proof (\Rightarrow) Let K los compact.
Characterization g compressed
TVS: K is closed \& bounded
Heine- LL Let if possible, K be not bounded.
Theorm [Mew to show that a set K is NoT Compact?
We search a sequence in K whose no sulseq converges in k. Pick an elementita, $\in K$ sit. $\left|a_{1}\right|>1$ makes unbseinde helps in Pick an element, say, $a_{2} \in K \Delta t \cdot\left|a_{2}\right|>2,\left|a_{2}\right|>\left|a_{1}\right| \rightarrow$ making ancruwn Pick an element, say, $a_{3} \in K$ s.t. $\left|a_{3}\right|>3,\left|a_{3}\right|>\left|a_{2}\right|$
$\left(a_{n}^{\prime}\right)$: strictly increasingesumboundid.
Any subsequence of $\left(a_{n}\right)$, that is unbound id
\Rightarrow No sulseg is convergent
$\Rightarrow K$ is not compact. *
so, K is bounded.
suppose $\alpha \in K^{\prime} \Rightarrow 7$ a sequence $\left(x_{n}\right)$ in K sit $\left(x_{n}\right) \rightarrow \alpha, x_{n} \neq \alpha$ Since, k is compact, $\left(x_{n}\right)$ has a subsequence $\left(x_{n_{k}}\right)$ st.

$$
\left(x_{n_{k}}\right) \rightarrow l \in K
$$

Observe: $l=\alpha$

$$
\therefore \alpha \in K \Rightarrow K \text { is closed. }
$$

* The Cantor set is compact

$$
(\because C \subseteq[0,1] \rightarrow \text { bounded }+(\text { is closed })
$$

$* \begin{aligned} & \left.\left\{O_{\lambda}: \lambda \in \Lambda\right\} \rightarrow \text { collection of open sets. }\right\} \text { Open cover } \\ & A \subseteq \cup O_{2}\end{aligned}$
Finite Sulcover: bullet of open cover \& avo A is contained in it.

* $(0,1) \subseteq \underbrace{U}_{x \in(0,1)}\left(\frac{x}{2}, i\right) \rightarrow\left\{\left(\frac{x}{2}, 1\right) ; x \in(0,1)\right\}$ So, $\left\{\left(\frac{x}{2}, 1\right): x \in(0,1)\right\}$ if an open cover for $(0,1)$. $x^{\frac{x}{2}}$ Does this open creeper possess any finite subcover? Let. $\left\{\left(\frac{x}{2}, 1\right),\left(\frac{x s}{2}, 1\right), \ldots,\left(\frac{x m}{x^{2}}, 1\right)\right\}, m<\infty$ (be tace finite subcoter) It $\alpha_{s}=\min \left\{\hat{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{m}^{2}\right\}$, which wa sub t $\prod_{i=1}^{\infty}\left(\frac{x_{1}}{2}, 1\right)=\left(\frac{x_{s}}{2}, 1\right) \neq(0,1)$ It cannot weever $(0,1)$.
Observe: $x_{s}>0$, so $\frac{x_{s}>0 .}{2}$
The open caver $\left\{\left(\frac{x}{2}, 10\right): x \in(0,1)\right\}$ for $(0,1)$ has no finite subrover
$\star \quad[0,1]$
$\left\{\left(\frac{x}{2}, 1\right): x \in[0,1]\right\}$ is
not an open cover as 0 \& 1

are not included in it
So, $\left\{\left(\frac{x}{2}, 1\right): x \in[0,17] \cup\{(-\varepsilon, \varepsilon) \cup(1-\varepsilon, 1+\varepsilon)\}\right.$ is open cover for $[0,1]$
Choose $x_{0} \in(0,0) \sim x_{3}<\varepsilon$
Cavdinala, $\&\left\{\left\{\frac{\left.x_{0}, 1\right),(-\varepsilon, \varepsilon),\left(1-\frac{1}{2},\{+\varepsilon)\right\} \text { is a finite subcaer. }}{\text { a }}\right.\right.$
(8) Result: Ret $K \subseteq \mathbb{R}$. Then TFAE
(1) K is compact
(2) K is cloud \& bounded
(3) trey open core for K has a finite subcourt
I. 9: $(0,1)$ has a open core \Rightarrow which $\operatorname{ham}^{\prime}$ 't trite subrorse So, k is NOT compact.
TS: 10,10 is NoT compact
$(0,1)$ has a sulseep $\left(\frac{1}{n+1}\right)(i+s$ which inst colwergein
it.
on it.
$(0,1)$ is bounded but rat closed.
Or $(0,1)$ has not any open cover ushich has finite suburver.
So, $(0,1)$ is Not compact.
* 2

$$
\pi \in 2 \Rightarrow\left(4\left(x_{n}\right) \text { in } 2 \ni\left(x_{n}\right) \rightarrow \pi\right.
$$

No subset of of x_{n}) cgs in 2
Q) a mother closed nor bounded

$$
\begin{aligned}
& \{(n, n): n \in \mathbb{N}\} \\
& \text { Q } \leq \cup \in \mathbb{n} \in \mathbb{N}(-n, n) \quad-\frac{1}{-n} 0^{-x} \frac{1}{2} 0 \frac{x^{n}}{2} \\
& \left\{\begin{array}{l}
\left.\left(-n_{1}, n_{1}\right),\left(-n_{2}, n_{2}\right), \ldots,\left(-n_{1}, n_{1}\right)\right\}^{\text {§ }}, s<\infty \text { is init } \\
\text { but cannot cover 2 }
\end{array}\right. \\
& \text { but (ant covers } \\
& n_{t}=\max \left\{n_{1}, \ldots, n_{s}\right\} \text {, then } \cup_{i=1}^{s}\left(-n_{i}, i\right)=\left(-n_{t}, n_{t}\right)
\end{aligned}
$$

$\left\{\frac{1}{h}: n \in \mathbb{N}\right\} \cup\{0\}$ is compact set

Q- Check the compactness of the following:
(1) $2 \cap[0,1]$
(2) \mathbb{R}
(3) $\left\{1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}=A$
(4) $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=B$
soth^{n} (1) $2 \cap[0,1]$ has irrational nos as its limit point but they a cont contained in $2 \cap\left[0,0^{-}\right.$, so, $2 \cap[0,1]$ is not closed. and hence, it is not compact.
$\frac{\pi}{4}$: limit point of $\left.Q \cap[0,1]\right] \Rightarrow 7 a$ sq. $\left(x_{n}\right)$ in $Q \cap[0,1]$ st.
\therefore But $\frac{\pi}{4} \notin 2 \cap[0,1]$
$\therefore \cap[0,1]$ is not closed. $\left(x_{n}\right) \rightarrow \frac{\pi}{4}, x_{n} \neq \frac{\pi}{4}, n \in \mathbb{N}$
$\left\{x_{n}\right\}$ has no sulseq, which $\left\{x_{n}\right\}$ has no subset, which
converges in $2 \cap[0,1]$ converges in $2 \cap[0,1]$.

$$
2 \cap[0,1] \subseteq[0, \alpha) \cup(\alpha, 1]
$$

$$
\text { Observe: } U\left\{\left(\alpha+\frac{1}{n}, 1\right): n \geqslant m_{0}\right\}=(\alpha, 1)
$$

$\left\{\begin{array}{l}\left\{\left(\alpha+\frac{1}{n}\right): n \geqslant m_{0}\right\} \cup(1-\varepsilon, 1+\varepsilon) \text { is open cover for }(\alpha, 1] \\ \left(\frac{1}{2}(0, \alpha) \cup(-\varepsilon, \varepsilon) \text { is open cover for }[0, \alpha)\right.\end{array}\right.$
\rightarrow open cover which has no finite subcover \Rightarrow Not compact.
(2) Not clos As \mathbb{R} is not bounded \Rightarrow so it is not compact. (By HB . As R is not bounded, So, by B.W. Thm, it doesn't contain any gtesubsequence, so, \mathbb{R} is not compact
$\{(-n, n): n \in \mathbb{N}\}$ is an open cover for \mathbb{R}

$$
\mathbb{R} \subseteq \mathbb{Q}_{n \in \mathbb{N}}(-n, n) \mathbb{R}
$$

(3) $\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}<A$

$$
\begin{aligned}
& y=\frac{x}{x+1}, x>0 \\
& \frac{d y}{d x}=\frac{1}{(x+1)^{2}}>0 \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{-2}{(x+1)^{3}}<0 \\
& \text { Inc. Sunder dice. } \\
& \operatorname{lt}_{d \rightarrow \infty} \frac{x}{x+1}=1
\end{aligned}
$$

As I is the only limit pt. of A \& $\mid \in A$, so A is closed and hence it is a compact set.
(4) B has the only limit pt is 0 but $O \& B, 80$, it is not closed \& hence, not compact.
B has no subsequences which converges in B as each sulelguence of B converges to 0 but $O \& B, 60$, B is not compact.

$$
\text { open cover of } \left.B \subseteq \frac{(1-\varepsilon, 1+\varepsilon) \cup\left(\frac{1}{3}, 1\right) \cup\left(\frac{1}{4}, \frac{1}{2}\right) \cup\left(\frac{1}{5}, \frac{1}{3}\right) \cup \ldots}{\frac{1}{5}, \frac{1}{3} \frac{1}{2}} 1-\varepsilon \frac{1}{1}+\varepsilon\right)
$$

which has no finite subcouer

$$
\text { But Bu\{0\} is compact set }
$$

$\frac{\text { TOM }}{2015}$ Let s be a nonempty subset of R. If s is a finite union of disjoint bounded intervals, then whish of the following is true?
(a)' If S is not compact, then sup $S \$ S$ \& inf $S \& S$
(6) Even if, sup $S \in S \&$ inf $S \in S$, s need not te compact.
(c) If sup $S \in S \&$ inf $S \in S$, then' s is compact.
(d) ten if S is compact, it is not necessary that sepses \& inf s $\in S$
Let s : supremem $\notin S$ s-1: not an $U B$.
$\Rightarrow 7$ an element $a_{1} \in S$ st. $s-k<a_{1}<s$
s-1 $\frac{1}{2}$: not an U.B. $\Rightarrow 7$ an element $a_{2} \in s$ s.t. $s-\frac{1}{2}<a_{2}<s$ $\frac{-1}{3}$: nat an $U \cdot B . \Rightarrow$ Fan element $a_{3} \in S$ st. $s-\frac{1}{3}<a_{3}<s$ $\left(a_{n}\right)$: sequence ins
Claim: $\left(a_{n}\right) \rightarrow s$
given $\varepsilon>0$
Goal: $\left|a_{n}-s\right|<\varepsilon \quad \forall n \geqslant N$
fie. $s-a n<\varepsilon$

We have $a_{n} t\left(s-\frac{1}{n}, s\right) \Rightarrow\left|a_{n}-s\right|<\frac{1}{n} \quad \forall n \in \mathbb{N}$ A. great

If we choose N : any natural no. greater than $\frac{1}{\varepsilon}$

$$
\begin{aligned}
& \Rightarrow N>\frac{1}{\varepsilon} \Rightarrow \frac{1}{N}<\varepsilon \Rightarrow \frac{1}{n} \leqslant \frac{1}{N}<\varepsilon \text { le. } n>\frac{1}{\varepsilon} \\
& \therefore\left|a_{n}-s\right|<\varepsilon \forall n \geqslant N
\end{aligned}
$$

* Result: If A is non-empty bounded above set of R, and $\sup A \notin A$, then $\sup A$ is a limit point of A. Analogously, for infinum.
Sol". (d) If s is compact suppose sup $S \notin S$, then $S u p S \in S^{\prime}$ But S, being compact, is closed, $\therefore S^{\prime} \subseteq S$
From $(*),(* *), \operatorname{sups} s=$
* The supremum and infimum of a non empty compact set must be its elements.
Q. Show that, if K is compact and F is closed, then $K \cap F$ is compar

Sol. $K \cap F \subseteq K$, and K is bold, so, $K \cap F$ is bounded K is compact, so, K is closed and F is also closed $\Rightarrow K \cap F$ is closed From (1) \& (2), we have $K \cap F$ is compact.

SSIR For two subsets x \& Y of \mathbb{R}, let $x+y=\{x+y: x \in x, y \in Y\}$
(4) If x \& y are open sets, then $x+y$ is open.
(2) If $x \& y$ are closed sets, then $x+y$ is $\&$ closed

If x \& y are compact sits, then $x+y$ is compact closed compact If x is closed, y is compact, then $x+y$ is closed.
Sol ORet $\alpha \in x+y$

β is aninteriou pt. of x res an interior pt. of y.

$$
\begin{equation*}
\tan \varepsilon_{1}>0 \text { set. }\left(\beta-\varepsilon_{1}, \beta+\varepsilon_{1}\right) \subseteq x \tag{b}
\end{equation*}
$$

$$
\text { IL, }, \exists \text { an } \xi_{\gamma}>\text { o st. }\left(\gamma-t_{2}, \gamma+t_{1}\right) \subseteq y
$$

(A) $+(B)$ gives, $\left(\beta+\gamma-\left(\varepsilon_{1}+\varepsilon_{2}\right), \beta+\gamma+\left(\varepsilon_{1}+\varepsilon_{2}\right)\right) \leq x+y$
Obicave (Show errype q + contains in $\uparrow)$

$$
\begin{aligned}
& =\text { ie. }\left(\alpha-\left(\varepsilon_{1}+\varepsilon_{2}\right), \alpha+\left(\varepsilon_{1}+\varepsilon_{2}\right)\right) \\
& \Rightarrow \alpha \in(x+y)^{\circ} \\
& \Rightarrow x+y \text { is an open set. }
\end{aligned}
$$

(2) $\{a+\sqrt{2} b: a, b \in \mathbb{Z}\} \rightarrow x$ tog $=\mathbb{Z}[\sqrt{2}]$ is tudidean rung.

$$
\int \sqrt{2}-1 \in \mathbb{Z}[\sqrt{2}] ? \gamma_{e s}
$$

$$
(0<\sqrt{2}-1<1)
$$

$$
(\sqrt{2}-1)^{2} \in \mathbb{Z}[\sqrt{2}]
$$

$02 \quad(\sqrt{2}-1)^{3} \in \mathbb{Z}[\sqrt{2}]$

$$
(z[\sqrt{2}])^{\prime}=R
$$

Is $\mathbb{Z}[\sqrt{2}]$ dosed? Not b| $\mathbb{R} \neq \underset{Z}{[\sqrt{2}]}$ पर towery out wo is it limpoint inside it (Cry real no. is limit point of $\mathbb{Z}[\sqrt{2}]$ but that doesnit belong to $\mathbb{Z} \sqrt{2}$)
$30, \mathbb{Z}[\sqrt{2}]$ is not closed.

$$
\begin{aligned}
& \mathbb{Z}[\sqrt{2}]=\mathbb{Z}+\sqrt{2} \mathbb{Z} \\
& \mathbb{Z}^{\prime}=\phi \quad \&(\sqrt{2} \mathbb{Z})^{\prime}=\phi \\
& \text { So } \mathbb{Z}: \sqrt{2} \mathbb{Z} \text { arelloled sets }
\end{aligned}
$$

$$
\text { So } \mathbb{Z}: \sqrt{2} \mathbb{Z} \text { are closed sets }
$$ but their sum is not closed.

(4)
x : closed set
I. S: $x+y$ is closed.
$\left.\begin{array}{l}\text { Let } z \in(x+y)^{\prime} \\ \text { I. } S \quad z \in x+y\end{array}\right\}$
Y : compact set

There exists a sequence f $z_{n} x+y$ sit. $\left(z_{n}\right) \rightarrow z, z_{n} \neq z \quad \forall n$

$$
\begin{aligned}
& z_{1}=x_{1}+y_{1} ; x_{1} \in X, y_{1} \in Y \\
& z_{2}=x_{2}+y_{2} ; x_{2} \in X, y_{2} \in Y \\
& z_{3}=x_{3}+y_{3} ; x_{3} \in X, y_{3} \in Y
\end{aligned}
$$

For each $n \in \mathbb{N}, 7 x_{n} \in x, y_{n} \in X$ s.t. $z_{n}=x_{n}+y_{n}$

$$
x_{k k}\left(y_{n x}\right)=\left(y_{n}, y_{n}+y_{n} \ldots \ldots\right)
$$

$$
\left(x_{n x}\right)=\left(x_{s, i}, x_{1}, x_{t a n} x_{n} \cdots\right)
$$

$\left(x_{n}\right): s g_{i}$ in x

$$
\left(y_{n}\right) \text { : seg in } y
$$

Y A compact \& $\left(y_{n}\right)$ has a suluequena $\left(y_{n,}\right)$ which comberges to a limit, which is an element of y

$$
\left(y_{m x}\right) \rightarrow y \in y
$$

$$
(2 n) \rightarrow 2 \rightarrow(2 m) \rightarrow z
$$

$\lim \left(z_{n n_{x}}-y_{n_{x}}\right)-\lim _{x_{n k}}\left(z_{n_{x}}\right)-\lim \left(y_{m, x}\right)=z-y \quad$ (By Algotra of Kimit),
$\Rightarrow \lim \left(x_{n_{k}}\right)^{x_{k}}=x-y^{x,} \Rightarrow x_{n k}$ is convergent also; $\left(x_{n, k}\right) \rightarrow x$

$$
\left(x_{n, x}\right): \operatorname{seg} \text { in } x \Rightarrow x \in x^{\wedge}
$$

is x is cloied, so, $x \bar{\varepsilon} x \Rightarrow x \in x$
Now, $z-y=x \Rightarrow z=x+y \in x+y(\because x \in x, y \in y)$

$$
\Rightarrow z e x+y
$$

$\therefore x+y$ is closed.
(3) Compact + closed is cloved \Rightarrow Comparct + compact is clored. $x) y$: compact sts
$\Rightarrow x+y$ is closed
$x x$: bounded

$$
\left[\begin{array}{c}
A: \text { bdd } \rightarrow 9 \text { an } M>0 \text { At. } \tag{0}\\
\\
\\
|x| \in<M \forall x \in A
\end{array}\right]
$$

I.S: $x+y$ is boudend

As x is bounded $\Rightarrow 3 M_{1}>0$ st $|x|<M_{1} \forall x \in X$
ly, $\exists \mathrm{H}_{2}>0$ s t $\mid y k \mathrm{~N}_{2} \forall y \in Y$
\& (1) +(2) $\Rightarrow|x|+|y|<M_{1}+M_{2} \quad \forall x \in x, y \in y$
Also $|x+y| \leqslant|x|+|y|<M_{1}+M_{2} \quad \forall x \in x, y \in y$
$\Rightarrow x+y<1$ bounded -(B)
(A) $f(B) \Rightarrow x+y$ is compact.

$$
\left|x_{n}-\alpha\right| \leq \frac{1}{3^{n}}<\frac{1}{n} \&\left(x_{n}\right) \rightarrow \alpha
$$

259196
$\star \quad A \subseteq \mathbb{R}$
$x \in A, x \notin A^{\prime}$, then x : isolated point
It must lelong to the set.

* $A \subseteq \mathbb{R}$

A: closed set
[$x \in A \rightarrow$ either x is a limit point $]$ of A or an isolated point of A]

- Dorfect ret: A set $A \subseteq \mathbb{R}$ is called a perfect set if it is cloved, containing no isolated point.
$l . g: O 2$ is not cloed, so, it is not perfect ot
(2) $[a, b]$ is prefect set
(3) Nor emply finiar setsaren't precet set
(4) Impty set is a plefect set $[x \in A \Rightarrow$ has isdated $p t$.]
(5) \mathbb{R} is a porfect sit
$2 \in C \rightarrow$ (axtoset (6) Cantor set is a perfect set as it has no indated pi.
 x_{n} : chosen from c_{n}. left end point of the component in which α lies
If α is the lift end paint, we choose the right and point of the component.
$\left(x_{n}\right)$: sequencin C

$$
\left.\begin{array}{l}
\left(x_{n}\right) \xrightarrow{\longrightarrow} \\
x_{n}+\alpha \not{ }^{\prime}
\end{array}\right] \Rightarrow \alpha \in C^{\prime}
$$

$\Rightarrow C$ has no isdated point, so, it is a perfect set.

- $\bar{A}=A \cup A^{\prime}$

When ur take clousere, the set "expands". (It dounn't expand when A^{\prime} is empty or A contains all its limit points)

- $A, B:$ nenempty sulsets of $A \mathbb{R}$

$$
A \cap \bar{B}=\phi \& \bar{A} \cap B=\phi^{3} \Rightarrow A \& B \text { art seperated sets. }
$$

- Seperated sets: A, B : non-empty surat of $\left.\mathbb{R}\left({ }^{A}\right)()^{B}\right)$

$$
\bar{A} \cap \bar{B}=\varnothing \& \bar{A} \cap B=\varnothing
$$

then $A \& B$ are empty then they conditions are tres automatically. It is necessary to take both the sets non-empty.

* $E \subseteq \mathbb{R}$

If E can be partitioned in two nonempty separated sets, then E is called a disconnected set.

$$
\text { lg: } O(1,2),(2,3) \rightarrow \text { separated set. }
$$

$$
E=(1,2) \cup(2,3) \rightarrow \text { Disconnected set }
$$

- A set which is not disconnected, is called a connected set. $\mathrm{l} g:(5,6],(6,7) \rightarrow$ not separated sets.
* E: connected set

$$
\left[\begin{array}{l}
\text { If } E=A \cup B \text {, then either } A \cap \bar{B} \neq \phi \text { or } \bar{A} \cap \bar{B} \neq \phi \\
\alpha \in A \cap \bar{B} \Rightarrow \alpha \in A \& \alpha \in \bar{B} \\
\alpha \in \bar{B} \Rightarrow F\left(x_{n}\right) \text { is } B \text { st. }\left(x_{n}\right) \rightarrow \alpha \in A \quad\left[\left(x_{n}\right) \text { conug, in } A\right] \\
\operatorname{ly}_{y} \in \bar{A} \cap B \Rightarrow F\left(y_{n}\right) \text { in } A \text { st. }\left(y_{n}\right) \rightarrow \alpha \in B\left[\left(y_{n}\right) \text { conugs. in } \bar{B}\right]
\end{array}\right]
$$

- A, B nonempty separated sets.

$$
\begin{aligned}
& A \cap \bar{B}=\phi \& A \cap B=\phi \\
& B \subseteq \bar{B} \Rightarrow A \cap B \in A \cap \bar{B}=\phi \\
& \Rightarrow A \cap B=\phi
\end{aligned}
$$

* Separated sets are disjoint.

But converse is not true.
e. $g:(1,2],(2,3] \rightarrow$ disjoint but not separated
(8) Disjoint sets may not be separated.
(2) Result: A sit E is connected \Leftrightarrow No matter how E is partitioned into two disjoint sots, there exists a sequence in one set which tomberge converges in the other set.

$$
[a, b], a \leq b \rightarrow \text { singleton set. }
$$

$$
[a, b], a<b
$$

Result: $E \neq \varnothing, E \subseteq R$
(Q), E is connected \Leftrightarrow Ether is a singleton set or an interwar eg: $(1,2) \cup(3,4) \rightarrow$ Not an interval, hence, not connected
$\frac{\text { TAM }}{2014}$ The set $\left\{\frac{x^{2}}{1-x^{2}}: x \in \mathbb{R}\right\}$ is
(a) Connected 1 but not compact in \mathbb{R}.
(b) Compact but not connected in \mathbb{R}
(c) compact and connected in \mathbb{R}.
(d) neither compact nor connected in \mathbb{R}.

Son: $y=\frac{x^{2}}{1+x^{2}} \Rightarrow \frac{d y}{d x}=\frac{2 x\left(1+x^{2}\right)-x^{2}(2 x)}{\left(1+x^{2}\right)^{2}}$
1101^{16}
CSIR Ret x be a connected set subset of reel numbers. If arty element of x is cirrational, then the cardinality of x is
(a) infinite

Sd ${ }^{4}: \quad \alpha, \beta \in x \quad \alpha \neq \beta$
$(\alpha, \beta) \leqslant x \Rightarrow(\because x$ is an interval $)$
But (α, β) has rational elements.
So, $|x|=1$
CSIR Let A be a subset of Wraith more than one element. Letact If $A \mid\{a\}$ is compact, then
(1) A is compact
(3) A must be a finite set
(2) Every subset of A is compact
(4) A is disconnected

$$
\begin{aligned}
& \text { from } \text { furn }^{4}=\frac{2 x+2 x^{3}-2 x^{3}}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}} \\
& \left.\frac{d y}{d x}\right|_{x=0}=0 \\
& \lim _{x \rightarrow \infty} \frac{x^{2}}{1+x^{2}}=\frac{1}{1 / x^{2}+1}=1 \\
& \therefore\left\{\frac{x^{2}}{1+x^{2}}: x \in \mathbb{R}\right\}=[0,1) \rightarrow \text { Not closed } \Rightarrow \text { Not Compact }
\end{aligned}
$$

Sol": Claim: $\left.x^{\prime}=(x \cup\{\alpha\}\}\right)^{\prime}$
ie. $X \cup\{a\}$ has no "new" "accumative area."

$$
\begin{aligned}
& x \subseteq x \cup\{\alpha\} \Rightarrow X^{\prime} \subseteq(X \cup\{\alpha\})^{\prime} \quad\left(\because A \subseteq B \Rightarrow A^{\prime} \subseteq B^{\prime}\right) \\
& \text { Let } a \in(X \cup\{\alpha\})^{\prime} \\
& \text { ISS: } a \in X^{\prime}
\end{aligned}
$$

Let if possible $a \notin X^{\prime}$
Gee $I a \neq$ an $_{0}^{\alpha}>0$ st. $\left(a-\varepsilon_{0}, a+\varepsilon_{0}\right)$ containing no point of x other than a

$$
\begin{aligned}
& \text { rake } \varepsilon_{1}=\frac{1}{2}|a-\alpha|, a \neq \alpha \\
& \therefore a \in x^{\prime 2} \\
& \Rightarrow(x \cup\{\alpha\})^{\prime} \subseteq x^{\prime} \\
& \Rightarrow x^{\prime}=(x \cup\{a\})^{\prime}
\end{aligned}
$$

$$
\left(\frac{1}{a-\varepsilon_{0}} \frac{p \dot{a} \propto}{}\right)
$$

$$
x \cup\{\alpha\} \Rightarrow \leftarrow
$$

*) If A is a finite set, then (i) $X^{\prime}=(X \cup A)^{\prime}$, (ii) $(X \mid A)^{\prime}=X^{\prime}$
(1) A $\mid\{a\}$: compact $\Rightarrow A \mid\{a\}$ is bounded \& closed
$A \backslash\{a\} \Rightarrow$ is bounded $\Rightarrow A$ is bounded
$A \mid\{a\}$ is closed $\Rightarrow(A \mid\{a\})^{\prime} \subseteq A \mid\{a\}$
Also, $A^{\prime}=(A \mid\{a\})^{\prime} \subseteq A \mid\{a\} \subseteq A \Rightarrow A^{\prime} \subseteq A \Rightarrow A$ is closed $\therefore A$ is compact
(2) $A=[1,2]$
A) $\{1\}=(1,2]$ is not correct ample ils it is given A|\{a\} is compact but $A \mid\{1\}$ inntcompact and it is n't true for any $a \in A \Rightarrow$ Invalid choice for A
Now, leet $A=\left\{\frac{1}{n}: n \in N\right\} \cup\{O\}$ is compact $] \Rightarrow \frac{\text { valid choice }}{\text { fer } A}$
Notinite $a=1, A \mid\{1\}$ is ${ }^{n}$ compact
$\operatorname{Let} B \subseteq A, B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
Is B Closed? No. bbc of $\in B^{\prime}$ but azo $\& B$
(4) As A has more than one clement, so, A can't be singleton Hence, for t to make A comected, A must be of the form $[\alpha, \beta],(\alpha, \beta],[\alpha, \beta),(\alpha, \beta) \rightarrow$ rejected as A is compact
so, $B u x, A=[\alpha, \beta]$ but for $1 a \in A, A \mid\{a\}$ is not compact \Rightarrow so $[\alpha, \beta]$ is rejected also. $\Rightarrow A$ is not connected.

- Dense sets in $\mathbb{R}: ~ G \subseteq \mathbb{R}$

Any $x, y \in \mathbb{R}, x<y$
Af: A At G is said to be dense in \mathbb{R}, if given any real numbers x, y, it is possible to find an element $a \in G$ st. $x<a<y$
(*) Result: G is dense in $\mathbb{R} \Leftrightarrow \bar{G}=\mathbb{R}$
Proof: $\Leftrightarrow G$: dense in \mathbb{R}
Let $\alpha \in \mathbb{R}$
TS: $\alpha \in \bar{G}$
As G is dense, so $\exists a \in G$ sit.

$$
x<a<y
$$

So, $\alpha \in G$

$$
(\Leftrightarrow) \operatorname{Let} G=\mathbb{R}
$$

$$
x, y \in \mathbb{R}, x<y
$$

So, G is dense in R.

* Q is dense in \mathbb{R} as $\bar{R}=\mathbb{R}$
\mathbb{Z} is not dense in \mathbb{R} as $\overline{\mathbb{Z}} \neq \mathbb{R}$
- Nowhere dense sets: A set $E \subseteq \mathbb{R}$ is said to be nowhere dense, if \bar{E} has no open interval.
* Result: E is nowhere dense $\Leftrightarrow(E)^{2}=\varnothing \Leftrightarrow(\bar{E})^{c}$ is dense in \mathbb{R}. "The closure has empty interior"
Proof): (1) \Rightarrow (2) Let E is nowhere cense

$$
\frac{T S}{\alpha \in \mathbb{R}}(\bar{E})^{\circ}=\varnothing
$$

TS: $\alpha \xi(E)^{\circ}$
Let if possible, $\alpha \in(\bar{E})^{\circ}$
$\operatorname{Ian} \varepsilon_{0}>0$ set. $\left(\alpha-\varepsilon_{0}, \alpha+\varepsilon_{0}\right) \subset E \Rightarrow(" E$ is nowhere denool
(2) \Rightarrow (1) $(E x$. $)$
(1) \Rightarrow (3) E : nowhere dense

ISS: $(E)^{C}$ is cense in \mathbb{R}
Let $\alpha \in \mathbb{R}$
TVS: α is a closure point of $(\bar{E})^{c}$ $(\overline{\alpha-\varepsilon}, \alpha+\varepsilon) \neq \bar{E}$ as E is nowhere cense

$$
\begin{aligned}
& \Rightarrow \exists a \in(\alpha-\varepsilon, \alpha+\varepsilon) \text { set } a \in(\bar{E})^{c} \Rightarrow(\alpha-\varepsilon, \alpha+\varepsilon) \subseteq(\bar{E})^{c} \\
& (3) \Rightarrow(1)(E x)
\end{aligned}
$$

Q: Decide whether the following sets are dense in \mathbb{R}, nowhere dense, or someurerer in between
(a) $A=2 \wedge[0,5]$
(b) $B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
(c) $\mathbb{R} \mid \mathbb{Q}$
(d) the cantor set C.

Sol $(a)(\bar{A})^{\circ}=[0,5]^{\circ}=(0,5) \neq \phi \Rightarrow$ it is not nowhere dense in \mathbb{R} $\bar{A} \neq \mathbb{R}, \therefore$ it is not dense in \mathbb{R}
(b) $(\bar{B})^{\circ}=\left(\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}\right)^{\circ}=\varnothing$

$$
\begin{aligned}
& \Rightarrow 0 \notin(\bar{B})^{\circ} \\
& \frac{1}{m} \in(\bar{B})^{\circ} \text { ? No as }\left(\frac{1}{m}-\varepsilon, \frac{1}{m}+\varepsilon\right) \notin \bar{B} \Rightarrow \frac{1}{m} \notin(\bar{B})^{\circ}
\end{aligned}
$$

$\therefore(\bar{B})^{\circ}=\nRightarrow \Rightarrow B$ is not dense but nowhere dense.
(1) $\overline{\mathbb{R} \mid \mathbb{Q}}=\mathbb{R} \Rightarrow \mathbb{R} \mid \mathbb{Q}$ is at dense in \mathbb{R}
$(\bar{R} \mid D)^{\circ}=\mathbb{R}, \Rightarrow \mathbb{R} \mid Q$ is not nowhere dense in \mathbb{R}.
(d) $\bar{C}=C \Rightarrow C$ is not dense in \mathbb{R}.
$(\bar{e})^{\circ}$ Chas no open interval i.e. \bar{C} has no open interval. Hence, C is nowhere dense. (By def n)

Serves

* $\left(a_{n}\right)$: sequence

$$
a_{1}+a_{2}+a_{3}+\ldots
$$

$$
\sum_{n=1}^{\infty} a_{n}
$$

sequence of partial sums :
$\sum_{i} a_{n}$ is said to be convergent if its sequence $\left(s_{n}\right)$ of partial sums is convergent.
$\star \quad \sum \frac{1}{n}$ is divergent and $\sum \frac{1}{n^{2}}$ is convergent.
(2) Result: $\sum_{\frac{1}{n p}}, p>0$ isconvergent if $p>1$ divergent fop $p 1$
Σa_{n} : convergent $\Leftrightarrow\left(s_{n}\right)$ is convergent $\Leftrightarrow\left(s_{n}\right)$ is Cauchy sequence of partial sums
\Leftrightarrow for an $\varepsilon>0$, $\operatorname{Fan} a N \in \mathbb{N}$ set. $\left|s_{n}-s_{n}\right|<\varepsilon \quad \forall n, m \geqslant N(n>m)$

$$
\begin{aligned}
& \text { ie., }\left|\left(a_{1}+a_{2}+\ldots+a_{m}+a_{m+1}+\ldots+a_{n}\right)-\left(a_{1}+\ldots+a_{m}\right)\right|<\varepsilon \forall n>m \geqslant N \\
& \text { i.e. }\left|a_{m+1}+\ldots+a_{n}\right|<\varepsilon \forall n>m \geqslant N
\end{aligned}
$$

Cauchy Criterion for the convergence of souses:
(*) Result: Σa_{n} is convergent \Leftrightarrow for each $\overline{1}>0,7$ an $N \in \mathbb{N} \& f$.

$$
1 a_{m+1}+a_{m+2}+\ldots+a_{n}<\varepsilon \forall n>m \geqslant N
$$

* $\sum a_{n}$ is convergent $\Rightarrow \lim$ on exists $\operatorname{tin}\left(s_{n+1}-s_{n}\right)=\lim \left(s_{n+1}\right)-\lim \left(s_{n}\right)$

$$
\begin{array}{ll}
& \lim \left(\frac{s_{n}-s_{n-1}}{}\right)=\lim \left(s_{n}\right)-\lim \left(s_{n-1}\right)=0 \\
a_{n}=0 & a_{n}
\end{array}
$$

* Recut: San is convergent $\left.\Rightarrow \lim a_{n}=0\right] \rightarrow$ Necessary condition ff Converse? Not true
leg: $\sum \frac{1}{n}$: divergent the Convergence of a soul but $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
It is necessary but not sufficient,
Q. Discuss the convergence of
(1) $\sum\left(\frac{1}{n}\right)^{1 / n}$
(2) $\sum \cos \frac{1}{n^{2}}$
$P \Rightarrow Q \rightarrow$ necessary condition
$P \Leftarrow Q \rightarrow$ Sufficient condition

Bor: (0)

$$
\begin{aligned}
& \text { (1) } y=\lim _{n \rightarrow \infty} \frac{1}{n^{1 / n}} \lim _{n \rightarrow \infty} n^{1 / n}=\lim _{n \rightarrow \infty} \log n^{1 / n}=\lim _{n \rightarrow \infty} \frac{\log n}{n} \\
& \begin{aligned}
\log y & =\lim _{n \rightarrow \infty} \frac{1 / n}{1}=0 \\
\Rightarrow \lim & \frac{1}{n^{1 / n}}=1 \neq 0 \Rightarrow \sum\left(\frac{1}{n}\right)^{1 / n} \text { is divergent }
\end{aligned}
\end{aligned}
$$

(2) $\lim _{n \rightarrow \infty} \cos \frac{1}{n^{2}}=\cos \lim _{n \rightarrow \infty} \frac{1}{n^{2}}(\because \cos$ is cont. 80 , it commute with

$$
n^{n^{2}}=\cos 0=1^{n+\infty} \neq 0^{n^{2}}
$$ $\lim (d)$

$\Rightarrow \operatorname{lov} \sum \cos \frac{1}{n^{2}}$ is dwiergent.
(2) If $\lim a_{n} \neq 0$, then $\sum a_{n}$ cannot convergent
$\frac{\frac{1 B H N}{2012}}{\operatorname{Let}}\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Pick out the cases which imply that the sequence is Cauchy
(a) $\left|x_{n}-x_{n+1}\right| \leqslant \frac{1}{n} \forall n$
(b) $\left|x_{n}-x_{n+1}\right| \leqslant \frac{1}{n^{2}} \forall n$
(1) $\left|x_{n}-x_{n+1}\right| \leqslant \frac{n}{n} \frac{1}{2 n} \forall n$

Sol: (u) Take $x_{n}=\sum_{k=1}^{n} \frac{2 n}{k}$
$\left(x_{n}\right)$: sequence of partial sums of $\sum \frac{1}{k}$ is not $\mathrm{g} t . \Rightarrow$ not Cauchy

$$
\left|x_{n}-x_{n+1}\right| \overline{<} \frac{1}{n+1} \leqslant \frac{1}{n}
$$

* Pseudo-Cauchy sequence: A sequence $\left(a_{n}\right)$ is said to be pseudocauchy sequence if for each $\varepsilon>0,7$ an $N \in \mathbb{N}$ st. $\left|a_{n+1}-a_{n}\right|<\varepsilon * h \geqslant N$
(*) A pseudo - cauchy sequence may not converge.
it looks' to be happen but may or may not happen
(b)

$$
\begin{align*}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+x_{n-2}-x_{n-3}+\ldots+x_{m+1}-x_{m}\right| \\
& \leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\left|x_{n-2}-x_{n-3}\right|+\ldots+\left|x_{m+1}-x_{n}\right| \\
& \leq \frac{1}{(n-1)^{2}}+\frac{1}{(n-2)^{2}}+\ldots+\frac{1}{m^{2}} \tag{1}
\end{align*}
$$

$\sum \frac{1}{n^{2}}$ is convergent \Rightarrow for a given $\varepsilon>0,7$ an $N \in \mathbb{N}$ sit. $\left[\begin{array}{c}\text { By Cauchy's } \\ \left|\frac{1}{(m+1)^{2}}+\frac{1}{(m+2)^{2}}+\ldots+\frac{1}{n^{2}}\right|<\varepsilon \quad \forall m>n \geqslant N \text { Criterion }\end{array}\right]$ (ai.e. $\frac{1}{(m+1)^{2}}+\frac{1}{(m+2)^{2}}+\ldots+\frac{1}{n^{2}}<\varepsilon$

$$
\begin{aligned}
\therefore & (1)<\frac{1}{n^{2}}+\frac{1}{n}+\frac{1}{m^{2}} \text {, if } m>n>N \\
& \therefore\left|x_{n}-x_{m}\right|<\varepsilon
\end{aligned}
$$

So, it is cauchy

(2) Suppose $\left|x_{n+1}-x_{n}\right| \leq a_{n}+n$

Then, 0 if $\leq a_{n}$ is convergent. then $\left(x_{n}\right)$ is tronwergent. Cauchy Goudy
(2) If $\sum a_{n}$ is not Cauchy, then $\left(x_{n}\right)$ is not cauchy.

TAM Which of the following conditions dooming ensulure the convergence of a real sequence $\left(a_{n}\right)$?
(a) $\left|a_{n}-a_{n+1}\right| \rightarrow \delta$ as $n \rightarrow \infty$ (b) $\sum\left|a_{n}-a_{n+1}\right|$ is convergent
(c) $\sum_{n=1}^{3} n a_{n}$ is convergent (cd) the sequences $\left\{a_{2 n}\right\},\left\{a_{2 n+1} \&\left\{a_{2 n}\right.\right.$

Sol: (a) $a_{n}=\sum_{k=1}^{n} \frac{1}{k}$ but $\lim _{n} a_{n}$ doesn't exist are conveying $\Rightarrow\left(a_{n}\right)$ is not convergent.
(c) (\&) En a_{n} is gt. $\Rightarrow \lim n a_{n}=0$
$\lim a_{n}$ exists if not so, then limn $n a_{n} \neq 0$ and must be zero, if not so then limn $a_{n}=\infty$ or -x
$\therefore \lim _{a_{n}}=0$
(d) $\left\{a_{2 n}\right\} \leftrightarrow l_{1} \quad\left\{a_{2 n+1}\right\} \rightarrow l_{2} \quad\left\{a_{3 n}\right\} \rightarrow l_{3}$ $\left\{a_{n 1}\right\}=\left\{a_{i}, a_{12}, \ldots\right\}$ is a subsequence of $\left\{a_{2 n}\right\}$ as well as $\left\{a_{4 n}\right.$ $\theta l_{y}=l_{3}$

$$
\left.\left(l_{1}=l_{3} \Leftarrow\left\{a_{(n}\right\}^{2}+l_{1} \text { \& }\left\{a_{\text {(n }}\right)^{4}\right)^{4}\right)
$$

$$
\begin{aligned}
& a_{n} \geqslant 0 \Rightarrow l t a_{n} \geqslant 0 \\
& \text { sq, } \frac{u_{n}}{v_{n}}>0 \Rightarrow l>0
\end{aligned}
$$

- Comparison Tests:
$\Sigma u_{n}, \sum v_{n}: \theta v e$ term sprues

1) There exists an $N \in \mathbb{N}$ st. $u_{n} \leqslant v_{n} \forall n \geqslant N$
2) Σv_{n} is convergent

Then $\sum u_{n}$ is also convergent.
Q. Test the convergence of
(1) $1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\cdots+\frac{1}{n^{n}}$
(2) $\sum \frac{1}{\sqrt{n}!}$

4(3) $\sum \frac{1}{n^{2} \log n}$
sod $101+\frac{1}{2^{2}}+\frac{1}{3^{3}}+\ldots+\frac{1}{n^{n}} \leq 1+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{n}}+\ldots$ is compergente
(2) $\frac{1}{\sqrt{n!}}=\frac{1}{\sqrt{1 \cdot 2 \cdot 3 \cdot n}} \leq \frac{1}{\sqrt{2^{n-1}}}=\frac{1}{2^{n-r) / 2}}=1+\frac{1}{2^{x_{2} / 2}}+\frac{1}{21}+\frac{1}{2^{3 / 2}}+\ldots$

So. $\frac{1}{2^{1 / 2}}+\frac{1}{2^{1}}+\ldots+\frac{1}{2^{(2 \pi-1)} / 2}$ is a Geometric serves with ration $\frac{1}{2^{1 / 2}}$ so, it $\frac{2}{}^{2 / 2}$ is convergent $\frac{1}{2^{(n) 1 / 2}}$ hence $\sum \frac{1}{\sqrt{n}}$! converges.
(3) $\sum \frac{1}{n^{2} \log n} \leqslant \frac{1}{n^{2}}$ and $\sum \frac{1}{n^{2}}$ cos , so, $\sum \frac{1}{n^{2} \log n}$ cos.

* Result: $\sum u_{n}, \sum v_{n}$: the term series
suppose limn $\frac{u_{n}}{T}=l$, where l is neither zero nor infinite, $l>0$ Then $\sum u_{n} \& \sum u_{n}$ Shave the same behaviour in relation to their convergence.
Proof: $l>0$ set $c=l / 2$
There exists an $N \in \mathbb{N}$ s.t. $\left|\frac{u_{n}}{v_{n}}-l\right|<\frac{l}{2} \quad \forall n \geqslant N$
$\Rightarrow \frac{1}{2}<\frac{u_{n}}{v_{n}}<\frac{31}{2} \quad \forall n \geqslant N$
$\Rightarrow \frac{1}{2} v_{n}<u_{n}<\frac{31}{2} v_{n}$
If $\sum v_{n}$ iscat, then $\sum 3 l v_{n}+$ and by above test, u_{n} is gt.
if $\sum v_{n}$ is gt, then $\sum \frac{2}{2} v_{n}$ is dgt and hence, un is gt

Q: framine the convergence of
(1) $\sum \frac{1}{n^{2}+a^{2}}$
(2) $\sum \frac{1}{\sqrt{n}+\sqrt{n+1}}$
(3) $\sum \frac{b n-a}{b n^{2}+a^{2}}$
(4) $\sum\left[\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right]$
(5) $\sum \sin \frac{1}{n}$
sQn: (1) $u_{n}=\frac{1}{n^{2}+a^{2}}, v_{n}=\frac{1}{n^{2}}$

$$
\lim \frac{u_{n}}{v_{n}}=\lim \frac{n^{2}}{n^{2}+a^{2}}=1>0
$$

As v_{n} is $\mathrm{cgt}, \mathrm{so}, u_{n}$ is aloo cgt.
(2) $\quad u_{n}=\frac{1}{\sqrt{n}+\sqrt{n+1}}, v_{n}=\frac{1}{\sqrt{n}+\sqrt{n}}=\frac{1}{2 \sqrt{n}}$

$$
\lim \frac{u_{n}}{v_{n}}=\frac{2 \sqrt{n}}{\sqrt{n}+\sqrt{n+1}}=1>0
$$

As v_{n} is dgt., so, u_{n} is abso dgt.
(3) $\quad u_{n}=\frac{b n-a}{b n^{2}+a^{2}}, \quad u_{n}=\frac{n^{2}}{n^{2}}=\frac{1}{n}$

A u_{n} des, so, undes.
(4) $u_{n}=\frac{\sqrt{n^{4}+1}-\sqrt{n^{4}-1}}{x-\sqrt{2}} \quad v_{n}=\frac{1}{\sqrt{n^{4}-1}+\sqrt{n^{4}+1}}=\frac{1}{2 n^{2}}$ As v_{n} get, $30, u_{n} \&$ egt.
(5) $u_{n}=\sin \frac{1}{n}, v_{n}=\frac{1}{n}$
$\lim \frac{u_{n}}{v_{n}}=\frac{\sin ^{1} n}{1 / n}=1$
So $\sum u_{n}$ dogs, as, undgs.

* Case: $\lim _{x \rightarrow a} f(x)=1 \quad \lim _{x \rightarrow a} g(x)=\infty$

$$
\lim _{x \rightarrow a}\{f(x)\} g(x)=e^{\lim _{x \rightarrow a}(f(x)-1) \cdot g(x)}
$$

- D'Alembert's ratio test:
$\sum u_{n}$: (t)ve term servies
Let $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=l$

Then if is $l>1, \sum u_{n}$ comerges
(ii) $k<1, \sum u_{n}$ diverges
(ii) $l=1$, them the test fries! Further, if l is infinite, then $\sum u_{n}$ converges

8 -Test the convergence
(1) $\sum \frac{(n+1)!}{3^{n}}$
(3) $\sum \frac{2^{n-1}}{3^{n}+1}$
(3) $\frac{1^{2} \cdot 2^{2}}{1!}+\frac{2^{2} \cdot 3^{2}}{2!}+\ldots+\ldots$

So ln: (1) $u_{n}=\frac{(n+1)!}{3^{n}}$

$$
\frac{u_{n}}{u_{n+1}}=\frac{(n+1)!}{3^{n}}+\frac{3^{n+1}}{(n+2)!}=\frac{3}{n+2} \rightarrow 0<1
$$

So $\sum u_{n}$ is divergent.
(3)

$$
\begin{aligned}
& u_{n}=\frac{2^{n-1}}{3^{n}+1} \\
& \frac{u_{n}}{u_{n+1}}=\frac{2^{n-1}}{3^{n}+1} \times \frac{3^{n+1}+1}{2^{n}}=\frac{1}{2}\left(\frac{3^{n+1}+1}{8^{n}+1}=\frac{1}{2}\left[\frac{3+3^{-n}}{1+3^{-2}}\right] \rightarrow \frac{3}{2}>1\right.
\end{aligned}
$$

So, sun is convergent
(3)

$$
\begin{aligned}
& u_{n}=\frac{n^{2} \cdot(n+1)^{2}}{n!} \\
& \frac{u_{n}}{u_{n+1}}=\frac{n^{2} \cdot(n+1)^{2}}{n!} \times \frac{(n+1)!}{(n+1)^{2}(n+2)^{2}}=\frac{n^{2}(n+1)}{(n+2)^{2}} \rightarrow \infty>1
\end{aligned}
$$

So, ,. un is comeregent.
$\frac{\text { NEar }}{2012}$ Pick ait the convergent series

$$
\text { Let } v_{n}=\frac{1}{\left(n^{3}\right)^{2 / 3}+n^{2}+\left(n^{3}\right)^{1 / 3} \cdot n} \overline{\frac{1}{n^{2}+n^{2}+n^{2}}}=\frac{1}{3 n^{2}} \text { is } \mathrm{egt} \text {. }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (1) } \sum\left[\left(n^{3}+1\right)^{1 / 3}-n\right] \quad \sum \frac{(n+1)^{n}}{n^{1 / 3 / 2 / 2}} \\
\text { Son } u_{n}=\left(n^{3}+1\right)^{1 / 3}-\left(n^{3}\right)^{1 / 3}
\end{array} \\
& \text { (3) } \sum \frac{1}{n^{1+1 / n}} \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& \text { Let }\left(n^{3}+1\right)^{1 / 3}=a \quad\left(n^{3}\right)^{1 / 3}=b \\
& \Rightarrow u_{n}=\frac{\left(n^{3}+1\right)-n^{3}}{\left(n^{3}+1\right)^{2 / 3}+\left(n^{3}\right)^{2 / 3}+\left(n^{3}+1\right)^{2 / 5} \cdot\left(n^{3}\right)^{1 / 3}}=\frac{1}{\left.\left(n^{3}+1\right)^{2 / 3}+n^{2}+(1)^{3}+1\right)^{3} \cdot n}
\end{aligned}
$$

Sa A.P.

$$
a_{n}=0+(n-1) \alpha
$$

$30,24 n$ is cgt.
a) $u_{n}=\frac{(n+1)^{n}}{n^{n+1 / 2}}=\left(\frac{n+1}{n}\right)^{n}=\frac{1}{n^{3 / 2}}$

$$
\begin{aligned}
& \text { Kut } v_{n}=\frac{1}{n^{1 / 2}} \\
& \lim \frac{u_{n}}{v_{n}}=\lim \left(\frac{n+1}{n}\right)^{n}=\lim \left(1+\frac{1}{n}\right)^{n}=e>0
\end{aligned}
$$

As v_{n} is gt ine so, u_{n} is aloo egt.
(3) $\sum u_{n}=\frac{1}{n^{+1}+n}-\frac{1}{n \cdot n^{1 / n}}$

$$
\begin{aligned}
& \text { Letlen }=\frac{1}{n} \\
& \lim \frac{u_{n}}{u_{n}}=\frac{1}{n^{\prime / n}}=1>0 \\
& {\left[\operatorname{Rr} y=\lim n^{\prime \prime n} \Rightarrow \log y=\lim \frac{1}{n} \log n=0\right.} \\
& \left.\Rightarrow y=e^{0}=1\right]
\end{aligned}
$$

As u_{n} is dgt, so, un is alsodgt.
$\frac{\mathrm{N} 8+\mathrm{H}}{2011}$

$$
\begin{aligned}
& \frac{1}{1 \cdot 2 \cdot 3}+\frac{3}{2 \cdot 3 \cdot 4}+\frac{5}{3 \cdot 4 \cdot 5}+\frac{7}{4 \cdot 5 \cdot 6}+\cdots . \\
& u_{n}=\frac{2 n-1}{n(n+1)(n)+2)} \\
& u_{n}=\frac{n \cdot 1}{n \cdot n \cdot n}=\frac{1}{n^{2}}
\end{aligned}
$$

from $\frac{u_{n}}{v_{n}}=$ is finite and non-zero - $5 u_{n}$ cgs, so, Eun also gs.

TFR T / F. The series $\frac{\sum \frac{\sqrt{n+1}-\sqrt{n}}{n} \text { diverges. }}{n}$
Sol ${ }^{n}: u_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n} \quad n v_{n}=\frac{1}{2 n^{3 / 2}}$
As v_{n} is $g t$. , so, u_{n} is gt.

- Guchy is $n^{\text {th }}$ root text: Σu_{n} : tre thrm series

Suppose $\lim _{n \rightarrow \infty}\left[u_{n}\right]^{1 / n}=l$
If $01<1$, then $\sum u_{n}$ converges
(2) $l>1$, then $\sum u_{n}$ dwoerges
(3) $l=1$, then test fails?

Q- Test the convergence of:
(1) $\sum\left(1+\frac{1}{n}\right)^{-n^{2}}$
(2) $\frac{\sum n^{n^{2}}}{(n+1)^{n^{2}}}$
(3) $\sum\left(\frac{n x}{n+1}\right)^{n}, x>0$

Sol: $0\left(u_{n}\right)^{1 / n}=\left(1+\frac{1}{n}\right)^{-n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}<1 \Rightarrow$
so, sun is gt.
(2) $\sum\left[u_{n}\right]^{1 / n}=\left(\frac{n^{n^{2}}}{(n+1)^{n^{2}}}\right)^{1 / n}=\frac{n^{n}}{(1+n)^{n}}=\left(\frac{n}{1+n}\right)^{n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}$

So, $\sum u_{n}$ is gt.
(3) $\left[u_{n}\right]^{n} \frac{n x}{n+1} \xrightarrow{n}$
$\left.\begin{array}{l}\text { If } x>1 \text {, Eundireges } \\ 0<x<1 \text {, sun converges }\end{array}\right]$ (By Cauchy's $n^{\text {th }}$ root Test)
For $\left.x=1, u_{n}=\frac{n}{n+1}\right)^{n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e} \neq 0 \quad\left(: \Sigma u_{n} g t \Rightarrow \lim _{n} u_{n}=0\right)$
So, If $x \geqslant 1$ them $2 u_{n}$ dwerigent
\Rightarrow For $x=1, \sum u_{n}$ is dg.
$0<x<1$, then ink un convergent,

- Cauchy's Integral Test:
$U(x)$: non-negative function, monotonically decreasing.

$$
u(n)=u_{n}
$$

Then $\sum_{n=1}^{\infty} u_{n}$ is convergent $\Leftrightarrow \int_{1}^{\infty} u(x) d x$ is convergent. "Finite value
lg: $\sum u_{n}=\frac{11}{n^{2}}$
Take $u^{n^{2}}(x)=\frac{1}{x^{2}}$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}} d x & =\operatorname{lt}_{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x-t_{t \rightarrow \infty}\left[\frac{-1}{x}\right]_{1}^{\infty} t \\
& =\operatorname{ll}_{t \rightarrow \infty}-\frac{1}{t}-(-1)=1
\end{aligned}
$$

$$
\Rightarrow \int_{1}^{\infty} u(x) d x \text { is } g t \Rightarrow \sum_{n=1}^{\infty} u_{n} \text { is gt. }
$$

Qu: $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}, p>0$
Sol: F ap $=1$

$$
\begin{aligned}
& u_{n}=\frac{1}{n \log n} \\
& u(x)=\frac{1}{x \log x} \\
& \int_{2}^{\infty} u(x) d x=\operatorname{lt}_{t \rightarrow \infty}^{\infty} \int_{2}^{a} \frac{1}{x \log x} d x=\frac{\operatorname{lt}}{t \rightarrow \infty} \int_{2}^{t} \frac{1 / x}{\log x} d x \\
&=\operatorname{lt}_{t \rightarrow \infty}[\log |\log x|]_{2}^{t}=\operatorname{lt}_{t \rightarrow \infty} \log |\log t|-\log (\log 2) \\
&=\infty
\end{aligned}
$$

So, $\int_{2}^{\infty} u(x) d x$ is not get \Rightarrow For $=1$, sun is not get.
For $p>1$,

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{1}{x(\log x)^{p}} d x=\int_{2}^{\infty} \frac{1 / x}{(\log x)^{p}} d x=t_{t \rightarrow \infty} \int_{2}^{t} \frac{1 / x}{(\log x)^{p}} d x \\
& =\operatorname{lt}_{t \rightarrow \infty}\left[\frac{(\log x)^{p+1}}{-p+1}\right]_{2}^{t}=\lambda_{t \rightarrow \infty} \frac{(\log t)^{-p+1}}{-p+1}-\frac{(\log 2)^{-p+1}}{-p+1}
\end{aligned}
$$

is finite as $p>1 \Rightarrow-p+1<0 \Rightarrow$ gat. For $0<p<1, \Rightarrow-p+1>0$, then $\int_{2}^{\infty} \frac{1}{x(\log x)^{p}} d x \rightarrow \infty$;
sodgt. If $p>1$, convergent
If $0<p \leq 1$, divergent

- Leibnitz's test: $\left(u_{n}\right)$: © xe term sequena
(1) $U_{1} \geqslant U_{2} \geqslant U_{3} \geqslant \ldots$
(2) $\lim _{n \rightarrow \infty} u_{n}=0$

Then the altumating serves $\Sigma(-1)^{n} u_{n}$ is convergent.
$\log _{=1} 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \quad \log 2$
$u_{n}=\frac{1^{4}}{n}$ is monotonically decreasing
and $u_{n \rightarrow \infty} u_{n}=0$
$\therefore \Sigma(-1)^{n} u_{n}=\frac{(-1)^{n}}{n}$ is convergent.

- Sun: series

Elunl: convergent

$$
\begin{aligned}
& s_{n}=u_{1}+u_{2}+\ldots+u_{n} \\
& t_{n}=\left|u_{1}\right|+\left|u_{2}\right|+\ldots+\left|u_{n}\right|
\end{aligned}
$$

$\left(t_{n}\right)$ is convergent, as $\sum\left|u_{n}\right|$ is convergent.
Is $\left(s_{n}\right)$ convergent? Yes

$$
\begin{aligned}
& \left.\left|s_{n}-s_{m}\right|=\left|u_{m+1}+\ldots+u_{n}\right| \leq\left|u_{m+1}\right|+\ldots+\left|u_{n}\right| \rightarrow\left|t_{n}-t_{m}\right|<\varepsilon \mid \text { as } \operatorname{sn}_{\text {n }} \text { (g.) }\right) \\
& \therefore \sum u_{n} \text { is } \mathrm{gq} . \text {. }
\end{aligned}
$$

(*) Result: If Elunl is convergent, then $\sum u_{n}$ is convergent. converse? t is not true
lg: $\sum \frac{1}{n}$ diverges but $\sum\left\{\frac{(-1)^{n}}{n}\right.$ converges

$$
\left|\frac{(-1)^{n}}{n}\right|
$$

- If $\Sigma\left|u_{n}\right|$ converges, Σu_{n} : Absolutely convergent series If $\sum u_{n}$ converges, but $\Sigma\left|u_{n}\right|$ does not converge.

Sun; conditionally convergent series
e.g. $\frac{\sum(-1)^{n}}{n}$ is conditionally convergent series.
$\sum \frac{1^{n}}{n^{2}}$ is absolutely amvergent series
(2) Rory (eve term series is is absolutely convergent series

$$
\log x<x \Rightarrow \log n<n \Rightarrow \frac{1}{\log _{n}}>\frac{1}{n}
$$

By comparison Test, $\frac{1}{\log n}$ is $d g t$.
Q- Test the convergence, absolute convergence and conditional convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log (n+1)}$
Sol": Keilonizz's Test
$\left.\begin{array}{l}\left(a_{n}\right): \text { Dive term } \\ \text { monotonically dec. }\end{array}\right\} \Rightarrow \sum(-1)^{n} a_{n c}$ converges
Hent Here, $a_{n}=\frac{1}{\log (n+1)} \rightarrow$ Are terms $\begin{aligned} & \text { \& mon dec } .\end{aligned}$

$$
\begin{aligned}
& \left(a_{n}\right) \rightarrow 0 \\
& \therefore \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log (n+1)} \text { converges. }
\end{aligned}
$$

* $\sum a_{n} \mid$ converges $\Rightarrow \sum a_{n}$ converges converse is not tall.
If Σa_{n} gs, then $\sum l a_{n} /$ may not converge.

$$
\begin{aligned}
& \sum\left|\frac{(-1)^{n+1}}{\log (n+1)}\right|=\sum \frac{1}{\log (n+1)} \\
& u_{n}=\frac{1}{\log (n+1)}
\end{aligned}
$$

* (2)

$$
\begin{aligned}
& u(x): M D \text { © } \\
& u(n)=u_{n} \forall n \\
& \int_{2}^{\infty} \frac{1}{\log x} \int d x=?
\end{aligned}
$$

Cauchy Integral Test
If $\frac{1}{\log (n+1)}$ converges, then it is A.C. and if not, thin $\left(a_{n}\right)^{\log (n+1)}$ is C.C. B As by comp. test $\sum \frac{1}{\log (n+1)}$ dg,
$80,\left(a_{n}\right)$ is C.C.
Q- Show that the serves

$$
\frac{\log 2}{2^{2}}-\frac{\log 3}{3^{2}}+\frac{\log 4}{4^{2}} \ldots \text { converges. }
$$

sol $: \sum_{n=2}^{\infty} \frac{\log n}{n^{2}}$ \& $u_{n}=\frac{\log n}{n^{2}}$

$$
u(x):=\frac{\log x}{x^{2}} ; x>0 \quad\left[\begin{array}{c}
M D \\
\text { Div }
\end{array}\right]
$$

$$
\begin{aligned}
& u^{\prime}(x)=\frac{x-2 x(\log x)}{x^{4}}=\frac{[1-2 \log x]}{x^{3}}<0 \text { if } x>? e^{1 / 2} . \\
& {\left[\text { if } 1-2 \log x<0 \Rightarrow 1<2 \log x \Rightarrow \frac{1}{2}<\log x \Rightarrow x>e^{1 / 2}\right]} \\
& \lim _{n \rightarrow \infty} \frac{\log n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1 / n}{2 n}=\lim _{n \rightarrow \infty} \frac{1}{2 n^{2}}=0
\end{aligned}
$$

$\therefore \quad \sum_{n=2}^{\infty}(-1)^{n} u_{n}$ is (gt.
CSIR Which of the following is convergent?
(1) $\sum \frac{1}{\sqrt{n+1}-\sqrt{n}}$
(2) $\sum \frac{\sin n}{n}$
(3) $\sum(-1)^{n} \log n$
(4) $\sum \log n$

So : $:$: (1) $u_{n}=\frac{1}{\sqrt{n+1}-\sqrt{n}} \times \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\sqrt{\sqrt{n+1}+\sqrt{n}}$
It is not get. as.
Euncgs $\& \Rightarrow \lim u_{n}=0$ but $\lim [\sqrt{n+1}+\sqrt{n}]=\infty$,
(3) $\lim _{n \rightarrow \infty}(-1)^{n} \log n \neq 0$
\Rightarrow it is not convergent.
(4)

$$
\begin{aligned}
& \text { I } u(x)=\frac{\log x}{x}, x>0 \\
& u^{\prime}(x)=\frac{1-\log x}{x^{2}}<0, \text { if } x>e \\
& \int_{1}^{\infty} \frac{\log x}{x} d x \\
& =\left[\frac{(\log x)^{2}}{2}\right]_{0}^{\infty}=\infty \log x=t \Rightarrow \frac{1}{x} d x=d t
\end{aligned}
$$

\Rightarrow It is also convergent.

- Arrichlet is Test: If $\left(u_{n}\right):(t)$ vet term seq.

$$
\left(u_{n}\right) \rightarrow 0
$$

Ian: series worth seq. of Partial sums as bounded,
then $\sum a_{n} u_{n}$ is convergent.
(2)
$a_{n}=\sin n, u_{n}=\frac{1}{n}$

$$
\begin{aligned}
s_{n} & =\sin 1+\sin 2+\ldots+\sin n \\
\left|s_{n}\right| & =|\sin 1+\sin 2+\ldots+\sin n| \\
& \leq|\sin 1|+\ldots+\sin n \mid \\
& \neq \mid
\end{aligned}
$$

$\Rightarrow \Sigma \sin n$ is bounded

- Hells Stest:If $\left(u_{n}\right)$: Are torn sequence bounded Ian: whose slag. of partial sue is gt . . of then $\sum a_{n} u_{n}$ is gt .
CSIR Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequence of real numbers satisfying $\left|a_{n}\right| \leqslant\left|b_{n}\right|$ for ale $n \geqslant 1$, then
(1) Σa_{n} converges whenever Σb_{n} converges.
(2) En converges absolutely, when Σ on converges alsolutich
(3) I b_{n} converges whenever s/ an converges
(4) E on converges absolutely whenever Σ an converges aluoluile
set : (1) tet $\sum b_{n}=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is get by kionitz's Tet: $\frac{(-1)^{n}}{n}$ and $\sum a_{n}=\overline{3}+\frac{1^{3}}{2}+\frac{1^{4}}{3}+\frac{1}{4}+\ldots$ is not gt.
Also $\mid a_{n} V=1 b_{n}$ in

Also $1 a_{n} V=1 b_{n}{ }^{2}$
(2) By Comparison test., San converges when E $\left|b_{n}\right|$ connery

$$
\text { as }\left|a_{n}\right| \leq\left|b_{n}\right|
$$

Alsatian $1,1 \mathrm{~b}_{n}$: © 9 ve term series.
(3) No, Let $\sum a_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$
(4) Liven: $\sum a_{n} a_{n}$ convergent e ${ }^{2}$.

Is $2 \mid$ on| convergent? No
Let $a_{n}=\frac{1}{n^{2}}, b_{n}=\frac{1}{n}$
$\sum\left|\frac{1}{n^{2}}\right|=\sum^{\frac{1}{n^{2}}} \frac{1}{n^{2}}$ is get. ${ }^{\bar{n}}$ but $\sum \frac{1}{n}$ hs not gg .

CSIR If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then which of the foysoring is NOT true?
(1) $\sum_{m=n}^{\infty} a_{m} \rightarrow 0$ as $n \rightarrow \infty$ (2) $\sum_{n=1}^{\infty} a_{n} \sin n$ is convergent.
(8) $\sum_{n=1}^{\infty=e^{a_{n}}}$ is convergent.
n=1 quien: $\sum_{n=1} a_{n}$ is A.C. $\Rightarrow \sum a_{n}$ gt; $\sum_{n=1}=8 a_{1}+a_{2}+\cdots+a_{m n}$
sol ${ }^{n}:$ (1) $\left|A_{m}-\Delta_{n}\right|=\left|a_{m+1}+a_{m+2}+\ldots+a_{m}\right|<\varepsilon \quad \forall m, n \geqslant N, m \geqslant n$

$$
\left|\sum_{k=\pi=1}^{m} a_{k}\right|<\varepsilon \quad \forall m, n \geqslant N \Rightarrow m \geqslant n
$$

lotting $m \rightarrow \infty$, we get

$$
\underbrace{\infty}_{\left.\right|_{k=m+1} ^{\prime \prime}} a_{k} \mid \leqslant \varepsilon \forall m \geqslant N
$$

$$
\left[\begin{array}{l}
\text { of } a_{n}<k+n \\
\Rightarrow \operatorname{lom} a_{n} \leq k
\end{array}\right]
$$

$\left(b_{m+1}\right) \rightarrow 0$
$\left\{\left(s_{n}\right)\right.$ is $\mathrm{gt} . \Rightarrow\left(s_{n}\right)$ is cauchy.
gevin $\varepsilon>0 \forall N \in \mathbb{N}$ s.t.

$$
\begin{aligned}
& b_{n+1}=\sum_{k=n+1}^{\infty} a_{k} \\
& \left|b_{n+1}\right| \leq \varepsilon \forall n \geqslant N \\
& \text { i.e. }\left|b_{n+1}-0\right| \leq \varepsilon \forall n \geqslant N \\
& \Rightarrow\left(b_{n+1}\right) \longrightarrow 0 \text { or }\left(b_{n}\right) \rightarrow 0
\end{aligned}
$$

where $b_{n}=\sum_{k=n}^{\infty} a_{k} \longrightarrow 0$ as $n \rightarrow \infty$
(2) $\left|a_{n} \sin n\right| \leq\left|a_{n}\right|$

As $\sum\left|a_{n}\right|$ is $g t . \Rightarrow \sum\left|a_{n} \sin n\right|$ is $g t$.
(3) $\lim _{n \rightarrow \infty} \frac{e^{a_{n}}\left(\because e^{i \operatorname{sim} a_{n}}=e^{0}=1\left(\because \sum a_{n} \text { is gt.) }\right)\right.}{(\because \text { evnt so conmuix } \neq 0}$ luctont limot)
\therefore Alvorgent
(4) $a_{n}=\frac{1}{n^{2}}$ \& $a_{n}^{2}=\frac{1}{n^{4}}$ ggt.

Power Series
Power $\left[\begin{array}{l}a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\ \sum_{n} x^{n}\end{array}\right.$
a_{n} : coefficients, independent of x.
Q- \& Xt n For what values of x, does the power serves $\operatorname{san}_{n} x^{n}$ converge?

* Result: If the power series $\sum a_{n} x^{n}$ converges for $x=a$, then the power series converges abrowtey for $x=\beta$, where $|\beta|<|\alpha|$
Proof: fiver: $\sum a_{n} \alpha^{n}$ converges.
Then $\lim _{n \rightarrow \infty} a_{n} \alpha^{n}=0$
Let $\varepsilon \stackrel{n \rightarrow \infty}{=\frac{1}{2}}$, Then \exists an $N \in \mathbb{N}$ st. $\left|a_{n} \alpha^{n}-o\right|<\frac{1}{2} \forall n \geqslant N$

$$
\text { i.e., }\left|a_{n}^{2} \alpha^{n}\right|<\frac{1}{2} \forall n \geqslant N
$$

Check $\sum a_{n} \beta^{n}-2$

$$
\left.\left|a_{n} \beta^{n}\right|=\left|a_{n}\right| \frac{\beta}{\alpha}\right)^{n} \cdot \alpha^{n} \left\lvert\,<\frac{1}{2}\left(\frac{\beta}{\alpha}\right)^{n} \quad \forall n \geqslant N\right.
$$

$\sum \frac{1}{2}\left|\frac{\beta}{\alpha}\right|^{n}$ is G.S. with cont ratio $\left|\frac{\beta}{\alpha}\right|<1$

$$
\text { As }|\beta|<|\alpha| \Rightarrow \frac{|\beta|}{|\alpha|}<1 \text { in e. }\left|\frac{\beta}{\alpha}\right|<1
$$

$\therefore \sum\left|a_{n} \beta^{n}\right|$ is convergent ie. $\sum a_{n} \beta^{n}$ is abs. convergent.
*) Result: If the par power series $\Sigma a_{n} x^{n}$ dweigges for $x=\gamma$, then the power series diverges for $x=\delta$, where $|\delta|<|\gamma|$
TAM If a pore series $\Sigma_{n} x^{n}$ converges for $x=3$, then the serve
(a) converges absolutely for $x=-2$.
(b) Converges but not absolutely for $x=-1$.
(c) Converges but not absolutely for $x=1$
(d) converges for $x=-2$.

R : radius of convergence.
 convergent and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is divelpent. Ret R lee the raduive of convergente of the pouter suries $\Sigma a_{x} x^{n}$, then we on cond dothe
(a) $0<R<$
(b) $R=1$
(c) $K R<\infty$
$(d) R=\infty$
Soln: For $x=1, \sum a_{n} x^{n}$ converges. $\left(\because \sum_{n=1}^{\infty} a_{n}\right.$ is gt.)

$$
(-1,1) \rightarrow \sum a_{n} x^{n} \text { is abs. ggt. }
$$

$$
\Rightarrow R \geqslant 1
$$

If For $|\alpha|>1$, check the conwergence if $\sum a_{n} a^{n}$
If $\Sigma a_{n} \alpha^{n}$ converges, then the waies \sum_{n} at qs alvolutily. $\Rightarrow=$ Wegct it, by puting $x=1$.
\therefore For $|\alpha|>0 \mid, \sum a_{n} \alpha^{n}$ is not convergent

$$
\Rightarrow R=1
$$

* Result: $\sum \ln x^{n}$ power servis

If $\overline{\lim }\left|a_{n}\right|^{1 / n}=\frac{1}{R}$, then R.oc $S S R$.
(8) If $\left(a_{n}\right) \cos$.top then $\overline{\lim } a_{n}=\lim a_{n}=l$

Aargest limit pt \& fimit suppriar Aimit inforier \rightarrow dmalleut tmit p \&
(28) If $\lim \left|a_{n}\right|^{\text {m }}=a$, then we brite $R=\infty \rightarrow$ "Everywhire convergent" $\begin{gathered}\text { If } \lim \\ l a \\ n\end{gathered} \mathrm{~m}=\infty$, then we write $R=0 \rightarrow$ Nowhere Conurgient".
Q-(1) The $1+2 x+3 x^{2}+$
(3) $\sum(-1)^{n} x^{n}$
(2) $\sum \frac{x^{n-1}}{n^{2}}$
(4) $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
$\operatorname{sot}^{n}(1) 1+2 x+3 x^{2}+\ldots=\sum n x^{n-1}=\frac{1}{x} \sum n x^{n}$
$a_{n}=n$

$$
\begin{aligned}
& \overline{\operatorname{Lim}}\left|a_{n}\right|^{n n}=\overline{\operatorname{Lim}} n^{\prime m}=\left[{ }^{n n} \rightarrow 1 \text { as } n \rightarrow \infty\right] \\
&=1=\frac{1}{R} \\
& \Rightarrow R=1
\end{aligned}
$$

Interval of Convergence:
Suspicious: For $x=1$
For $x=-1$
En

$$
\sum(-1)^{n} n
$$

$\left(a_{n}\right) \rightarrow \infty$, when $n \rightarrow \infty$
$\left(a_{n}\right)$ is dg.
$\therefore \Sigma n$ is gt.
$\therefore \Sigma(-1)^{n} n$ is dat.

$$
\therefore I O C=(-1,1)
$$

(2)

Interval of Convergence:
Suspicious pes: For $x=10$
$\frac{1}{n^{2}}$ is gu.
For $x=-1$

$$
\therefore I O C=[-1,1]
$$

$$
\frac{\Sigma(-1)^{n}}{n^{2}} \text { is gt. by Reibnitz's tat }
$$

(3)

$$
\begin{aligned}
& \sum(-1)^{n} x^{n} \\
& a_{n}=(-1)^{n} \\
& \left.\lim \mid a_{n}\right)^{1 / n}=\overline{\lim } \left\lvert\,(-1)^{1 / n}=1=\frac{1}{R}\right. \\
& \Rightarrow R=1
\end{aligned}
$$

For $x=1, \sum(-1)^{n}$ is gt.

$$
\begin{aligned}
& \text { For } x=-1, \sum(-1)^{n}(-1)^{n}=\sum(-1)^{2 n}=\sum 1 \text { is dgt. } \\
& \therefore I O C=(-1,1)
\end{aligned}
$$

$$
\begin{aligned}
& \sum \frac{x^{n-1}}{n^{2}}=\frac{1}{x} \sum \frac{x^{n}}{n^{2}} \\
& a_{n}=\frac{\bar{x}}{n^{2}} \\
& \begin{array}{l}
\operatorname{tim}\left|a_{n}\right|^{1 / n}=\overline{n^{2}}\left(\frac{1}{n^{2}}\right)^{1 / n}=1=\frac{1}{R} \\
\text { Let } y=\left(\frac{1}{n^{2}}\right)^{1 / n} \\
\log y=
\end{array} \\
& \log y=\frac{\frac{1}{n}}{n} \log \frac{1}{n^{2}}=\frac{\log 1 / n^{2}}{n}=\frac{\left.1 /(x)^{1}\right) \frac{n^{2} \times-1 / n^{3}}{1}}{n} \\
& =\frac{-x^{x}}{n x}=\frac{-1}{n} \\
& \lim _{n \rightarrow \infty} \log y=\lim _{n \rightarrow \infty} \frac{-1}{n}=0 \\
& \left.\Rightarrow \log \lim _{n \rightarrow \infty} y=0 \Rightarrow \lim _{n \rightarrow \infty} y=e^{0}=1\right] \\
& \Rightarrow R=1
\end{aligned}
$$

(4)

$$
\begin{aligned}
& n+\frac{1+\frac{x^{2}}{2!}+\ldots=\frac{\Sigma x^{n}}{n!}}{a_{n}=\frac{1}{n!}} \\
& \overline{\lim }\left|a_{n}\right|^{1 / n}=\overline{\lim }\left(\frac{1}{n!}\right)^{1 / n}=\overline{\operatorname{sim}} \frac{1}{(n!)^{1 / n}}=\frac{1}{e}=\frac{1}{R}
\end{aligned}
$$

* Cluchy's furist theoram on Rimits.

Cauchy's second theorem on tumits $\Rightarrow \lim (n!)^{v_{n}}=e$?

$$
\Rightarrow R=e
$$

For $x=e$,
Qrîc Alprication of awhys.
Q: The power series $\frac{\left[2+(-1)^{n}\right]^{n}}{3^{n}} x^{n}$ convergess
(1) only for $x=0$
(3) for all $x \in \mathbb{R}$

Sodn: $a_{n}=\frac{\left[2+(-1)^{n}\right]^{n}}{3^{n}}$
(2) oncy for $-1<x<1$
(4) oncy for $-1<x \leq 1$

$$
\operatorname{\operatorname {lim}}\left|a_{n}\right|^{1 / n}=\operatorname{\operatorname {lim}}\left|\frac{2+(-1)^{2}}{3}\right|=\frac{1}{3}, 1, \frac{1}{3}, 1, \ldots
$$

Limit pis. of $\frac{2+(-1)^{n}}{\lim }$ are $\frac{1}{3}, 1$
$\left.\therefore \lim _{R=1} 1 a_{n}\right|^{1 / n}=1=\frac{1^{3}}{R}$

$$
\begin{aligned}
& \Rightarrow R=1 \\
& \text { For } x=1, \sum \frac{\left[\frac{\left[2+(-1)^{n}\right]^{n}}{3^{n}}\left(\frac{2+(-1)^{n}}{\imath^{3}}\right)^{n} \neq 0\right.}{}
\end{aligned}
$$

$\therefore \operatorname{Far} x=1, \sum a_{n} x^{n}$ is not cgt.
$\frac{\text { TAN }}{2010}$ The radies of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n^{2}}$, where $a_{0}=1, a_{n}=3^{-n} a_{n-1}$ for all $n \in \mathbb{N}$, is
(a) 0
(b) $\sqrt{3}$
(c) 3
(d) ∞

$$
\begin{aligned}
a_{n}=\frac{1}{3^{n}} a_{n-1} & =\frac{1}{3^{n}} \cdot \frac{1}{3^{n-1}} a_{n-2}=\frac{1}{3^{n}} \cdot \frac{1}{3^{n-1}} \cdot \frac{1}{3^{n-2}} \cdots \frac{1}{3} \cdot 1 \\
& =\frac{1}{3^{1+2}+\cdots+n}=\frac{1}{3^{n(k+1)}}
\end{aligned}
$$

$n^{2} \rightarrow$ Cauchy $n^{\text {th }}$ root test
Linear, $2 n+5 \rightarrow$ De Alembert Rethio Test

$$
\lim \left|a_{n}\right|^{1 / n}=\lim \left|\frac{1}{3^{(n+1) / 2}} \cdot z^{n}\right|
$$

For the convergence of $\sum a_{n}, \lim \left|\frac{1}{1+1)} z^{n}\right|<1$ i.e. $\lim \left|\frac{z^{n}}{(\sqrt{3})^{n} \cdot \sqrt{3}}\right|<l$ i.e. $\left.\lim \left|\left\lvert\, \frac{2}{\sqrt{3}}\right.\right)^{n} \right\rvert\,<\sqrt{3}$
(6) $\sum r^{n}$ cos if $-1 \leqslant r<1$]

This ie. $\lim \left|\frac{2}{\sqrt{3}}\right|^{n}<\sqrt{3}$
This limit exist only when $\left|\frac{z}{\sqrt{3}}\right|<1$ ie. $|z|<|\sqrt{3}|$
(and it is $0<\sqrt{3}$) (and it is $0<\sqrt{3}$)
$\Rightarrow R=\sqrt{3}$

$$
\Rightarrow R=\sqrt{3}
$$

$\frac{\text { TAM }}{2009}$ Let $a_{n}= \begin{cases}1 / 3^{n}, & \text { if } n \text { is prime } \\ 1 / 4^{n}, & \text { if } n \text { is not prim }\end{cases}$ The radius of convergence of $\Sigma a_{n} x^{v}$ is
(a) 4
(b) 3
(c) 1
sol: If $a_{n}=\frac{1}{3^{n}}$, then $\left.\overline{\lim } \left\lvert\, \frac{1}{3^{n}}\right.\right)_{n n}^{3 / n}=\overline{\lim } \frac{1}{3}=\frac{4}{3}=\frac{1}{R_{1}} \Rightarrow R_{=}=3$
If $a_{n}=\frac{1}{4^{n}}$, then $\lim \left|\frac{1}{4^{n}}\right|^{3^{n}} / n=\frac{1}{4}=\frac{1^{3}}{R_{2}} \Rightarrow R_{2}^{3}=4$

$$
R=\min \left\{R_{1}, R_{2}\right\}=3
$$

Q: If $a_{n}=\left\{\begin{array}{ll}\frac{1}{3 n}, & \text { if } n=3 m \\ 1 / 4^{n} & \text { if } n=3 m+1\end{array}\right.$, then $R=3$

* Af we take $R=4$, then prime terms diverges $f_{-4}^{(} C_{-3}$, ,
$\frac{\text { JAM }}{2007}$ Suppose $\left(C_{n}\right)$ is a seq. of real numbers. st $\lim \left|c_{n}\right|^{1 / n}$ exists \& is non zero. If the radius of convergence of $\sum c_{n} x^{n}$ is equal to r, then the radius of convergence of $\sum_{n^{2}} c_{n} x^{n}$ is
(a) less than r
(c) equal to r
(b) greater than r

So ln: $\lim \left|C_{n}\right|^{1 / n}=\frac{1}{r}$
(d) equal to 0.

$$
\lim \left|n^{3} c_{n}\right|^{1 / n}=\lim \left(n^{2 n}\right)^{2}+\left|c_{n}\right|-1 \cdot \frac{1}{x}=\frac{1}{x}
$$

(8) Result $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ for $\Sigma a_{n} x^{n}$ derwed from De 'Alembuct

Q: $10 x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots . \quad \rightarrow \frac{x^{n}}{n!}$
(2) $\frac{1}{2} \cdot x+\frac{1}{2} \cdot \frac{3}{5} x^{2}+\frac{1}{2} \cdot \frac{3}{5} \cdot \frac{35}{8} x^{3}+\cdots \rightarrow \sum \frac{(6) \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdot \cdots(3 n-1)} x^{n}$
$\sin \left(0 a_{n}=\frac{1}{n!}\right.$

$$
R=\lim \frac{x_{n}!}{x(n+1)!}=\lim n+1=\infty
$$

$\therefore \operatorname{san}^{2} x^{4}$ is gt. everefushore.
(2)

$$
\begin{aligned}
& a_{n}=\frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{2 \cdot 5 \cdot 8 \cdots \cdot(3 n-1)} \\
& R=\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\operatorname{tim}^{m} \frac{3(n+1)-1}{2(n+1)-1}+\lim _{n \rightarrow 2} \frac{n+2}{2 n+1}=\frac{3}{2}
\end{aligned}
$$

JAM If the power series $\sum \frac{n!}{n^{n}} x^{2 n}$ converges for $|x|<c$ and diverges for $|x|>c$, then $d=?^{n^{n}}$
Sax: Sr let $x^{2}=$, then $\frac{\sum n!}{n^{n}} x^{2 n}=\frac{\sum n!}{n^{n}} y^{n}$

$$
\begin{aligned}
& R=\lim \frac{\left(n+1 \cdot n^{n+1}\right.}{(n+1) \cdot n^{n}} \lim _{\frac{(n+1)^{n}}{n^{n}}=\lim \left(\frac{1}{(1+1 / n)^{n}}\right)=\frac{x}{e} e} \\
& |y|<\frac{e}{6} \Rightarrow\left|x^{2}\right|<e \text { i.e. }|x|<\sqrt{e} \Rightarrow c=\sqrt{e} .
\end{aligned}
$$

The set of all points x at which $\sum \frac{n}{(2 n+1)^{2}}(x-2)^{3 n}$ converges is
$\sum n$
$y^{n}, y=(x-2)^{3}$
Sun ${ }^{n}$

$$
\begin{aligned}
& \sum \frac{n}{(2 n+1)^{2}} y^{n}, y=(x-2)^{3} \\
& R=\lim \left(\frac{n}{n+1}\right) \frac{(2 n+3)^{2}}{(2 n+1)^{2}}=1
\end{aligned}
$$

